Hardware description languages

Describe hardware at varying levels of abstraction
Structural description

textual replacement for schematic

hierarchical composition of modules from primitives
Behavioral/functional description

describe what module does, not how

synthesis generates circuit for module
Simulation semantics

CSE 370 - Winter 200 - Hardware Description Languages - 1

HDLs

Abel (circa 1983) - developed by Data-I/O
targeted to programmable logic devices
not good for much more than state machines
ISP (circa 1977) - research project at CMU
simulation, but no synthesis
Verilog (circa 1985) - developed by Gateway (now part of Cadence)
similar to Pascal and C
delays is only interaction with simulator
fairly efficient and easy to write
IEEE standard
VHDL (circa 1987) - DoD sponsored standard
similar to Ada (emphasis on re-use and maintainability)
simulation semantics visible
very general but verbose
IEEE standard

CSE 370

Vinter 200 - Hardware Description Languages - 2

Verilog

Supports structural and behavioral descriptions
Structural

explicit structure of the circuit

e.g., each logic gate instantiated and connected to others
Behavioral

program describes input/output behavior of circuit

many structural implementations could have same behavior

e.g., different implementation of one Boolean function
We'l only be using behavioral Verilog

rely on schematic for structural constructs

CSE 370 - Winter 200 - Hardware Description Languages - 3

Structural model

module xor gate (out, a, b);

input a, b;
output out;
wire abar, bbar, tl, t2;

inverter invA (abar, a);
inverter invB (bbar, b);
and_gate andl (tl, a, bbar);
and_gate and2 (t2, b, abar);
or_gate orl (out, tl, t2);

endmodule

CSE 370 - Winter 200 - Hardware Description Languages - 4

Simple behavioral model

Continuous assignment

module and _gate (out, inl, in2);

input inl, in2;
output out;
reg out;

assign #2 out = inl & in2;

delay from input change
to output change

are Description Languag:

endmodule

CSE 370 - Wints

Simple behavioral model

always block

module and_gate (out, inl, in2);

input inl, in2;

output out; / simulation register -

reg out; keeps track of
value of signal

always @(inl or in2) begin
#2 out = inl & in2;
end

endmodule specifies when block is executed
ie. triggered by which signals

CSE 370

Winter 200 - Hardware Description Languages

Driving a simulation

module stimulus (a, b);

output a, b;/

reg [1:0] cnt;
| initial block executed

only once at start
of simulation

initial begin
cnt = 0;
repeat (4) begin

#10 cnt = cnt + 1;

$display ("@ time=%d, a=%b, b=%b, cnt=%b",

$time, a, b, cnt); end
#10 $finish; print to a console

end

assign a = cnt[1];
assign b = cnt[0];
endmodule

CSE 370 - Winter 200 - Hardware Description Languages

Complete Simulation

Instantiate stimulus component and device to test in a schematic

-2

b =
stimidus [D

CSE 370 - Winter 200 - Hardware Description Languages - 8

Comparator Example

module Comparel (A, B, Equal, Alarger, Blarger);
input A, B;
output Equal, Alarger, Blarger;

assign #5 Equal = (A & B) | (~A & ~B);

assign #3 Alarger = (A & ~B);

assign #3 Blarger = (~A & B);
endmodule

CSE 370 - Winter 200 - Hardware Description Languages - 9

More Complex Behavioral Model

module life (n0, nl, n2, n3, n4, n5, n6, n7, self, out);

input n0, nl, n2, n3, n4, n5, n6é, n7, self;
output out;
reg out;

reg [7:0] neighbors;
reg [3:0] count;
reg [3:0] i;

assign neighbors = {n7, n6, n5, n4, n3, n2, nl, n0};
always @(neighbors or self) begin

count = 0;
for (i = 0; i < 8; i = i+l) count = count + neighbors[i];

out = (count == 3);
out = out | ((self == 1) & (count == 2));
end
endmodule
CSE 370 - Winter 200 - Hardware Description Languages - 10

Hardware Description Languages vs.
Programming Languages

Program structure
instantiation of multiple components of the same type
specify interconnections between modules via schematic
hierarchy of modules (only leaves can be HDL in DesignWorks)
Assignment
continuous assignment (logic always computes)
propagation delay (computation takes time)
timing of signals is important (when does computation have its effect)
Data structures
size explicitly spelled out - no dynamic structures
no pointers
Parallelism
hardware is naturally parallel (must support multiple threads)
assignments can occur in parallel (not just sequentially)

CSE 370 are Description Languages - 11

Winter 200 - Ha:

Hardware Description Languages and
Combinational Logic

Modules - specification of inputs, outputs, bidirectional, and internal signals

Continuous assignment - a gate's output is a function of its inputs at all
times (doesn't need to wait to be "called")

Propagation delay- concept of time and delay in input affecting gate output
Composition - connecting modules together with wires

Hierarchy - modules encapsulate functional blacks

Specification of don't care conditions

0 - Winter 200 - Hardware Description Languages - 12

Hardware Description Languages and
Sequential Logic

Flip-flops
representation of clacks - timing of state changes
asynchronous vs. synchronous
FSMs
structural view (FFs separate from combinational logic)
behavioral view (synthesis of sequencers)
Data-paths = ALUs + registers
use of arithmetic/logical operators
control of storage elements
Parallelism
multiple state machines running in parallel
Sequential don't cares

CSE 370 - Winter 200 - Hardware Description Languages - 13

Flip-flop in Verilog

Use always block's sensitivity list to wait for clock edge

module dff (clk, 4, q);

input clk, d;

output q;
reg ai
always @(posedge clk)
q=d;
endmodule
CSE 370 - Winter 200 - Hardware Description Languages - 14

More Flip-flops

Synchronous/asynchronous reset/set
single thread that waits for the clock
three parallel threads — only one of which waits for the clock

module dff (clk, s, r, d, @); module dff (clk, s, r, d, @ ;
input clk, s, r, d; input clk, s, r, d;
output g; output g;
reg q; reg q;
always @(posedge clk) always @(posedge reset)
if (reset) q = 1'b0;
else if (set) always @(posedge set)
else q = 1'bl;
always @(posedge clk)
endmodule a=
endmodule
CSE 370 - Winter 200 - Hardware Description Languages - 15

Structural View of an FSM

Traffic light controller: two always blocks - flip-flops separate from logic

module FSM (HL, FL, ST, clk, C, TS, TL);

output [2:0] HL, FL; reg (2:0] HL, FL;
output ST; reg ST;

input clk;

input C, TS, TL;

reg [1:0] present_state;

reg [1:0] next_state;

initial begin HL = 3'b001; FL = 3'b100; present_state = 2'b00; end

always @(posedge clk) // registers
present_state = next_state;

always @(present_state or C or TS or TL)
// compute next-state and output logic whenever state or inputs change
// put equations here for next_state[1:0], HL[2:0], FL[2:0], and ST
// as functions of C, TS, TL, and present_state(1:0]
endmodule

CSE 370 - Winter 200 - Hardware Description Languages - 16

Behavioral View of an FSM

Specification of inputs, outputs, and state elements

module FSM(HR, HY, HG, FR, FY, FG, ST, TS, TL, C, reset, Clk);

output HR;

output HY;

ZSEPSE ?i ‘define highwaygreen 6'b001100
tp N v ‘define highwayyellow 6'b010100

Zﬁtiﬁt o ‘define farmroadgreen 6'b100001

output sT; define farmroadyellow 60100010

input TS;

input TL; .

' assign HR = statel6];

input c; N

' assign HY = state[5];

input reset; : HG = statel4];

input Clk; assign - srate :

assign FR = state(3];
assign FY = state(2];
assign FG = state(1];

reg [6:1] state;
reg ST;

specify state bits and codes
for each state as well as
connections to outputs

CSE 370 - Winter 200 - Hardu

re Description Languages - 17

Behavioral View of an FSM (cont’d)

initial begin state = ‘highwaygreen; ST = 0; end

always @(posedge Clk)
begin
if (reset)
begin state = ‘highwaygreen; ST
else
begin
ST = 0;
case (state)
‘highwaygreen:
if (TL & C) begin state = ‘highwayyellow; ST =
‘highwayyellow:
if (TS) begin state = ‘farmroadgreen; ST = 1; end
‘farmroadgreen:
if (TL | !C) begin state = ‘farmroadyellow; ST = 1; end
*farmroadyellow:
if (TS) begin state = ‘highwaygreen; ST = 1; end
endcase
end
end
endmodule

case statement
triggerred by
clock edge

CSE 370 - Winter 200 - Hardware Description Languages - 18

Timer for Traffic Light Controller

Another FSM

module Timer(TS, TL, ST, Clk);
output TS;
output TL;
input ST

input Clk;

integer value;

assign TS = (value >= 4); // 5 cycles after reset
assign TL = (value >= 14); // 15 cycles after reset

always @(posedge ST) value

0; // async reset
always @(posedge Clk) value = value + 1;

endmodule

CSE 370 - Winter 200 - Hardware Description Languages - 19

Complete Traffic Light Controller

Tying it all together (FSM + timer)

module main(HR, HY, HG, FR, FY, FG, reset, C, Clk);
output HR, HY, HG, FR, FY, FG;
input reset, C, Clk;

Timer partl(Ts, TL, ST, Clk);

FSM part2(HR, HY, HG, FR, FY, FG, ST, TS, TL, C, reset, Clk);
endmodule

CSE 370 - Winter 200 - Hardware Description Languages - 20

Verilog FSM - Reduce 1s example

Moore machine

‘define zero 0
‘define onel 1 <—— state assignment
‘define twols 2

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;

reg [2:1] state; // state variables

reg [2:1] next_state; 1 0
always @(posedge clk)
if (reset) state = ‘zero;
else state = next_state;
0 1
1
CSE 370 - Winter 200 - Hardware Description Languages - 21

Moore Verilog FSM (cont’d)

always @(in or state)\
crucial to include

case (state) all signals that are

// 1ast input was a zero input to state and

begin output equations
if (in) next_state = ‘onel;
else next_state = ‘zero;
end
‘onel: note that output only
// we've seen one 1 depends on state
begin
if (in) next_state = ‘twols;
else next_state = ‘zero;
end
‘twols: always @(state)
// we've seen at least 2 ones case (state)
begin ‘zero: out = 0;
if (in) next_state = ‘twols; ‘onel: out = 0;
else next_state = ‘zero; ‘twols: out = 1r
end endcase
endcase
endmodule
CSE 370 - Winter 200 - Hardware Description Languages - 22

Mealy Verilog FSM

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
‘register state; // state variables
reg next_state;

always @(posedge clk)
if (reset) state = ‘zero;
else state = next_state;

always @(in or state)
case (state)

0/0 1/o0

‘zero: // last input was a zero
begin
out = 0;
if (in) next_state = ‘one;
else next_state = ‘zero; 1/
end
‘one: // we've seen one 1
if (in) begin
next_state = ‘one; out = 1;
end else begin
next_state = ‘zero; out = 0;
end
endcase
endmodule

CSE 370 - Winter 200 - Hardware Description Languages - 23

Synchronous Mealy Machine

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables

always @(posedge clk)

if (reset) state = ‘zero;
else
case (state)
‘zero: // last input was a zero
begin
out = 0;
if (in) state = ‘one;
else state = ‘zero;
end
‘one: // we've seen one 1
if (in) begin
state = ‘one; out = 1;
end else begin
state = ‘zero; out = 0;
end
endcase
endmodule

CSE 370 - Winter 200 - Hardware Description Languages - 24

