

Acquisitions Editor:

 Tim Cox

Assistant Editor:

 Laura Cheu

Production Editor:

 Lisa Weber

Marketing Coordinator:

Anne Boyd

Manufacturing Manager:

Casimira Kostecki

Cover Design and Illustration:

 Yvo Riezebos

Text Designer:

 Lisa Jahred

Copyeditor:

Nick Murray

Proofreader:

Holly McLean-Aldis

Copyright



 1997 Addison Wesley Longman, Inc. and Capilano Computing Systems, Ltd.

All rights reserved. No part of this publication may be reproduced, or stored in a database or retrieval sys-
tem, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of America.
Printed simultaneously in Canada.

Camera-ready copy for this book was prepared using FrameMaker.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial caps or in all caps.

LogicWorks is a trademark of Capilano Computing Systems, Ltd.

Verilog is a registered trademark of Gateway Design Automation Corporation

Framemaker is a registered trademark of Frame Technology Corporation of San Jose, California.

Windows is a registered trademark of Microsoft Corporation

Macintosh is a registered trademark of Apple Computer Inc.

Instructional Material Disclaimer

The program presented in this book has been included for its instructional value. It has been tested with
care but is not guaranteed for any particular purpose. Neither the publisher or the authors offer any war-
ranties or representations, not do they accept any liabilities with respect to the program.

Library of Congress Cataloging-in-Publication Data

LogicWorks.
Intermediate Programming and Problem Solving in C++
name last name/name last name

p. cm.
Includes index
ISBN X-XXXX-XXXX-X
1. C (Computer program language) 2. Compilers (Computer programs)

I. Last name, first name II. Title
QXXX.XX.XXXXXX 1995
XXX.XXX--XXXXXX-XXXXX

CIP

ISBN 0-201-89585-4

1 2 3 4 5 6 7 8 9 10 CRS 00 99 98 97 96

Addison Wesley Longman, Inc.

2725 Sand Hill Road
Menlo Park, California 94025

@LVM Manual.Book Page i Tuesday, April 21, 1998 1:50 PM

CCCCCaaaaapppppiiiiilllllaaaaannnnnooooo
CCCCCooooommmmmpppppuuuuutttttiiiiinnnnnggggg

LogicWorks
Verilog
Modeler

INTERACTIVE CIRCUIT SIMULATION SOFTWARE

FOR WINDOWS

®

 AND MACINTOSH

™

VERSION 3

An imprint of Addison Wesley Longman, Inc.

Menlo Park, California • Reading, Massachusetts • Harlow, England
Berkeley, California • Don Mills, Ontario • Sydney • Bonn • Amsterdam • Tokyo • Mexico City

@LVM Manual.Book Page ii Tuesday, April 21, 1998 1:50 PM

iii

1

Introduction 1

Features 1
How This Manual Is Organized 2
Platform Differences 3
Notes Regarding Copyright 4

Part I

General Operation 5

2

Program Installation 7

Installing the Macintosh Version 7

Quick Installation 8
Files Included in the Installation 9
Memory Usage 9

Installing the Windows Version 10

Contents

@LVM Manual.Book Page iii Tuesday, April 21, 1998 1:50 PM

iv

Contents

Quick Installation 10
Selecting a Text Editor 11
Files Included in the Installation 11

3

Tutorial 13

Modifying an Existing File 13
Simulating a Circuit with Multiple Verilog Models 16
Creating a Verilog Model Top-Down 18
Creating a Verilog Model Bottom-Up 21
Saving a Verilog Model with a Library Part 24

4

Using the Complete Program 27

Design Organization with the Verilog Modeler 27
Creating a Verilog Device Symbol 28

Verilog Primitive Type 28
Port Interface 29

Operation 33

Opening the LVM Control Panel 33
Opening the Verilog Source Code 33
Creating a New Verilog Model 34
Selecting a Text Editor (Windows Only) 34
Using an External Text Editor 35
Saving Source Code to an External File 35
Transferring Source Code Via the Clipboard 36
Compiling the Verilog Model 36
Controlling Message Output 37

Simulation with the Verilog Modeler 38

@LVM Manual.Book Page iv Tuesday, April 21, 1998 1:50 PM

Contents

v

Compiling and Initialization 38
Debugging a Verilog Model 39
Copying Variable Values to the Clipboard 41
Resetting a Single Model 41

Part II Verilog Language Support 43

5

Structure of a

Verilog File 45

Module Organization 45
Module Header 47
Declaration Section 47
Statement Section 48
Module Termination 49
Module Structure Summary 49

6

Language Syntax 51

White Space and Comments 51
Statement Separators 52
Numbers 52

Unknown and High-Impedance Constants 53

Strings 53
Identifiers 54

@LVM Manual.Book Page v Tuesday, April 21, 1998 1:50 PM

vi

Contents

Escaped Identifiers 54
Keywords 55
System Tasks and Functions 55

The

$display

 System Task 56
The

$time

 System Function 56
The

$finish

 System Task 57

Compiler Directives 57
Text Macros 57

7

Data Types 59

Register Data Type 59
Memories 60
Ports 61

Port-Register Aliasing 61

Named Events 62
Integer Variables 63
Time Variables 63
Unsupported Data Types 64

8

Expressions and Assignments 65

Operands 65
Operators 66
Arithmetic Operators 67
Comparison Operators 68
Logical Operators 68

@LVM Manual.Book Page vi Tuesday, April 21, 1998 1:50 PM

Contents

vii

Bitwise versus Reduction Operators 69

Concatenation Operator

{} 69

Conditional Operator

? : 70

Bit Lengths in Expressions 70
Continuous Assignments 71
Procedural Assignments 71

Blocking Procedural Assignments 72
Nonblocking Procedural Assignments 73
Procedural Continuous Assignments 74

9

Procedural Constructs 75

always

 and

initial

 Blocks 75

Execution Order of

initial

 and

always

 Blocks 76
Execution Flow Within a Procedure 77

begin

/

end

 Blocks 77

Named

begin

/

end

 Blocks 78

Conditional Statements 79

The

if-else

 Statement 79
The

case

 Statement 80

Looping Statements 82

The forever Loop 83
The repeat Loop 84
The while Loop 84
The for Loop 84

Disables 85

@LVM Manual.Book Page vii Tuesday, April 21, 1998 1:50 PM

viii Contents

10
Time Control: Delays and Events 87

Delays 87
Statement Delays 88
Assignment Delay Control 89

Events 90
Named Events 90
Value-Change Events 91
Event OR Construct 91
Assignment Event Control 92
Repeat Event Construct 92

The wait Statement 93

Appendix A–Differences from OVI Verilog 95

Appendix B–

Verilog Keywords 97

Index 99

Addison-Wesley Technical Support 105

@LVM Manual.Book Page viii Tuesday, April 21, 1998 1:50 PM

xi

Preface

Welcome to the LogicWorks Verilog Modeler (LVM) and the world of
digital circuit design using hardware description languages! Hardware
description languages (HDLs) are now important tools in the design of
digital systems. In fact, a visitor to some corporate hardware engineering
departments might assume that he had stepped into the Software
Department by mistake! Many systems are now designed “behaviorally,”
that is to say, by describing the operation of the system in high-level terms,
rather than by drawing a detailed logic diagram. Designers work with
textual descriptions of a circuit that look a lot like software programs,
rather than drawing classical circuit schematics.

Verilog is one of the two most widely used HDLs in industry, the other
being VHDL. It is well established in the market, and various Verilog-
compatible simulation and synthesis tools are available.

The goals of the LogicWorks Verilog Modeler are

■ To introduce the student to the concepts of hardware description
languages.

■ To make it easier to create and test simulation models for a
LogicWorks circuit.

■ To provide an upward path to industry-standard tools that might be
used in more advanced courses or applications.

It is important to note that the LVM does not implement all parts of the
Verilog language. Only the behavioral parts of the language are
implemented, whereas gate-level modeling, hierarchy, and other structural
concepts are not supported in this version.

@LVM Manual.Book Page xi Tuesday, April 21, 1998 1:50 PM

xii Preface

About This Manual

The purpose of this manual is to get you started using the package quickly
and then provide reference information on technical issues and Verilog
language support. We assume that you have a general familiarity with
LogicWorks 3 operation and with the concepts of the Verilog language.
This manual is not intended as a primer or application manual for Verilog.
If you are new to LogicWorks, try working through at least the “Five-
Minute Schematic and Simulation” section of Chapter 4 in the LogicWorks
3 manual.

Acknowledgments

Many people at Capilano Computing and at Addison-Wesley Publishing
provided invaluable help in bringing this version of LogicWorks into the
world. Particular thanks go out to Tim Cox and Laura Cheu at Addison-
Wesley, to Don Gamble and Neil MacKenzie at Capilano, and to Pai Chou
at the University of Washington, all of whom remained cheerful and fun to
work with despite setbacks and schedule pressures.

Other key contributors include Susan Slater, Lisa Weber, and Anne Boyd at
Addison-Wesley.

Special thanks go out also to our many friends and supporters in the
academic and industrial worlds who continue to provide valuable feedback
and support for the ongoing development of this product.

Chris Dewhurst
Vancouver, B.C., Canada
June, 1996

@LVM Manual.Book Page xii Tuesday, April 21, 1998 1:50 PM

1

1
Introduction

Welcome to the LogicWorks Verilog Modeler! The LVM is an extension
that runs with LogicWorks 3 and allows you to create device simulation
models using a subset of the industry-standard hardware description
language Verilog. Using the Verilog Modeler with LogicWorks 3, students
and professionals can learn how to program, design, and test their own
circuits with a current industry hardware description language. Once the
LVM is installed, it becomes part of LogicWorks. There is no switching
between applications and no new user interfaces to learn.

This highly interactive package allows you to step, modify, and debug your
Verilog code without switching applications or waiting for long compiles.
You can simply double-click on a part in the schematic to create or view
the Verilog behavioral definition. Variables can be displayed interactively
as the simulation progresses, allowing for easy debugging and evaluation.
In addition to modeling physical components, the LogicWorks Verilog
Modeler is ideal for creating stimulus and test programs for other
LogicWorks circuits.

Features

■ Fully Integrated Verilog Simulation—Just double-click on a schematic
symbol to create and edit a simulation model in Verilog.

■ Interactive Control Panels—Allow the user to display the internal
variables of the Verilog model as the simulation progresses.

■ Unlimited Execution—Any number of Verilog models can execute
simultaneously in a single design.

@LVM Manual.Book Page 1 Tuesday, April 21, 1998 1:50 PM

2 Chapter 1— Introduction

■ Flexible Program Output Options—Textual program output from
compilation errors, execution errors, or $display statements in the
Verilog source code can be redirected to the screen or to a text file.

■ Fast Compile Times—Whenever you close a source window, or on
command, the Verilog source code is compiled in seconds to
executable form.

■ Tool Sharing—Use LogicWorks Simulation Tools such as the Timing
display to create and display simulation data.

How This Manual Is Organized

This manual is divided into two parts reflecting the two different facets of
operation of the LVM package. Part I, “General Operation” looks at the
mechanics of creating and editing Verilog models and using them in
LogicWorks circuits. This part includes a tutorial chapter to help you get
started, as well as reference sections on the various menu commands and
technical issues.

To get started with the LVM, see Chapter 2 for help in installing the
software, and then try out the tutorials in Chapter 3. These will get you up
and running quickly. You can use the remaining chapters as a reference
when you need specific details.

Part I is divided into the following chapters:

■ Chapter 2, Program Installation—How to install the LogicWorks
Verilog Modeler package.

■ Chapter 3, Tutorial—A quick guide to the features of the package. All
the basic procedures you need to get started are covered here.

■ Chapter 4, Using the Complete Program—This chapter goes into detail
on the interface between the LVM and the LogicWorks simulator, the
usage of the various controls and options, and technical issues for
advanced users.

Part II, “Verilog Language Support” describes in detail the subset of the
Verilog Hardware Description Language implemented in this package.

@LVM Manual.Book Page 2 Tuesday, April 21, 1998 1:50 PM

Platform Differences 3

This section is intended only as a reference and assumes that you have
some general familiarity with the Verilog language and its constructs.

■ Chapter 5, Structure of a Verilog File—Provides an overview of a
Verilog module definition.

■ Chapter 6, Language Syntax—Describes the low-level syntax of the
Verilog language.

■ Chapter 7, Data Types—Gives a complete description of the data types
supported in the LVM.

■ Chapter 8, Expressions and Assignments—Describes how data values
are manipulated and assigned in Verilog.

■ Chapter 9, Procedural Constructs—Describes the conditional, looping,
and other control structures available.

■ Chapter 10, Time Control: Delays and Events—Describes the Verilog
delay and synchronization facilities available in the LVM package.

■ Appendix A, Differences from OVI Verilog—Enumerates the
differences between the full Verilog language and the subset
implemented in the LVM.

■ Appendix B, Verilog Keywords—Provides a listing of the reserved
words in the full Verilog language.

In this manual, text with an arrowhead:

c like this

provides step-by-step instructions for achieving a specific goal. Other text
provides background and explanation of the actions being taken.

Platform Differences

This manual applies to both the Macintosh and Windows versions of the
LogicWorks Verilog Modeler. Although most of the information provided
applies equally to both versions, there are occasional differences in
operation. In these cases, you will see each platform described separately
in a format like this:

@LVM Manual.Book Page 3 Tuesday, April 21, 1998 1:50 PM

4 Chapter 1— Introduction

Macintosh–Type ““““-V to paste the text into the box.

Windows–Type cccc-V to paste the text into the box.

To avoid constant interruptions for slight differences in terminology, we
have been fairly relaxed about using terms like folder and directory
interchangeably. Our apologies to the platform purists among our readers!

Notes Regarding Copyright

The LogicWorks and LogicWorks Verilog Modeler software and manuals
are copyrighted products. The software license you have purchased entitles
you to use the software on a single machine, and to make copies only for
backup purposes. Any unauthorized copying of the program or
documentation is subject to prosecution. Alternative site license
arrangements are available for users requiring larger numbers of units or
access over a network.

@LVM Manual.Book Page 4 Tuesday, April 21, 1998 1:50 PM

Part I
General Operation

This first part of the manual covers the installation and usage of the LVM
package, including these topics:

■ Installing the LVM package on your machine.

■ Creating and editing Verilog models.

■ How the LVM simulator works with the main LogicWorks simulator.

■ The operation of the LVM controls and options.

Part I also includes the tutorial chapter that will lead you through most of
the important procedures required in using the LVM.

@LVM Manual.Book Page 5 Tuesday, April 21, 1998 1:50 PM

@LVM Manual.Book Page 6 Tuesday, April 21, 1998 1:50 PM

7

2
Program Installation

This chapter gives you the information you need to install the LogicWorks
Verilog Modeler package on your machine. After you have installed the
package, we suggest that you proceed with the tutorials in Chapter 3. These
will help get you up and running with a minimum of reading.

IMPORTANT: Please look for a ReadMe file on the installation diskette provided with this
package. This file may contain important information that supersedes the
procedures described here.

Although the software is very similar in operation on the Windows and
Macintosh versions, installation procedures are quite different for the two
systems. For that reason, the rest of this chapter is divided into separate
sections for the two machines.

Installing the Macintosh Version

The LogicWorks Verilog Modeler requires that LogicWorks 3 be already
installed for correct operation.

NOTE: Please see the ReadMe file on the installation disk for version compatibility
information. Any attempt to use it with incorrect versions may give very
unreliable results.

@LVM Manual.Book Page 7 Tuesday, April 21, 1998 1:50 PM

8 Chapter 2—Program Installation

Quick Installation

The LVM package is easily installed by following these steps:

c Make sure you have the correct version of LogicWorks installed on
your hard disk by running the program and consulting the About
LogicWorks box. Compare the version number with the one specified
in the ReadMe file on the LVM diskette. If you do not have the correct
version, there may be an upgrade included with the LVM package, or
there may be a free upgrade available over the Internet. Again, please
refer to the ReadMe file for details.

c Insert the LogicWorks Verilog Modeler Installer diskette in your ma-
chine, if it is not already inserted.

c Double-click on the LVM Installer icon.

c When you are prompted to select the destination for the installer, select
any convenient location on your hard disk and click Continue.

c When the installation is complete, locate the LVM Installation folder
that was created by the installer and open it.

c Move the files LVM and XEditor to the Tools folder inside the main
LogicWorks folder.

c Move the contents of the folder Demos to the Demos folder inside the main
LogicWorks folder.

c If LogicWorks is already running, quit and restart the program. If not,
just start it up.

Installation is now complete! Test the LVM by opening the circuit file
V163.cct in the Demos folder and clicking on the switches. If the LVM is
working, you should see a binary count sequence in the output displays.
Double-click on the 163 device to display the LVM control panel. If you
get the message “This device is not a sub-circuit type and cannot be
opened”, or something similar, then the LVM module is not correctly
installed.

@LVM Manual.Book Page 8 Tuesday, April 21, 1998 1:50 PM

Installing the Macintosh Version 9

Files Included in the Installation

This section describes the individual files included with the package. You
should review this material if you have a specific need to create some
unusual installation setup.

The following files are included:

NOTE: The LVM tool does not appear in the Tools menu even when it is installed
and running. Its functions are invoked by opening an associated device
symbol.

Memory Usage

The LogicWorks Verilog Modeler occupies a small amount of memory
space (about 200 K) regardless of whether it is being used or not. If you are
operating on a system with a minimal amount of memory, it may be
desirable to keep the module in another folder where it will not be found
and loaded by LogicWorks. When it is actually needed, it can be moved
temporarily into the LogicWorks folder.

During operation, the LVM module can use a significant amount of
memory in creating the tables and simulation data required as part of the

LVM This is the main LogicWorks Verilog Modeler tool and in-
cludes the compiler, simulator, and interactive control func-
tions. It should be placed in the Tools folder inside the
LogicWorks folder. It will be found and loaded automatically
when LogicWorks starts up.

XEditor This is a simple text editor for optional use with the Verilog
Modeler. It should be placed in the Tools folder inside the
LogicWorks folder. It will be found and loaded automatically
when LogicWorks starts up. It is also possible to use an ex-
ternal text editing application and move the text between ap-
plications using the clipboard.

Demos This folder contains some LogicWorks design and library files
demonstrating the use of the Verilog Modeler. It can be in-
stalled inside the LogicWorks Demos folder or in any conve-
nient location.

@LVM Manual.Book Page 9 Tuesday, April 21, 1998 1:50 PM

10 Chapter 2—Program Installation

compilation and simulation process. This memory requirement depends
completely on the size and complexity of the Verilog source file.

Installing the Windows Version

The LogicWorks Verilog Modeler requires that LogicWorks 3 be already
installed for correct operation.

NOTE: Please see the ReadMe file on the installation disk for version compatibility
information. Any attempt to use it with incorrect versions may give very
unreliable results.

Quick Installation

The LVM package is easily installed by following these steps:

c Make sure you have the correct version of LogicWorks installed on
your hard disk by running the program and consulting the About
LogicWorks box. Compare the version number with the one specified
in the ReadMe file on the LVM diskette. If you do not have the correct
version, there may be an upgrade included with the LVM package, or
there may be a free upgrade available over the Internet. Again, please
refer to the ReadMe file for details

c Insert the LogicWorks Verilog Modeler Installer diskette in your ma-
chine, if it is not already inserted.

c Locate and execute the file INSTALL.EXE.

c Follow the instructions on the screen for selecting an installation loca-
tion.

Installation is now complete! Test the LVM by opening the circuit file
v163.cct in the Demos directory and clicking on the switches. If the LVM
is working, you should see a binary count sequence in the output displays.
Double-click on the 163 device to display the LVM control panel. If you
get the message “This device is not a sub-circuit type and cannot be

@LVM Manual.Book Page 10 Tuesday, April 21, 1998 1:50 PM

Installing the Windows Version 11

opened”, or something similar, then the LVM module is not correctly
installed.

Selecting a Text Editor

The LogicWorks Verilog Modeler package relies on having a text editor
available for creating and modifying source code. If you don’t make any
other selection, operations that require a text editor will use the standard
NotePad application. You can change this selection at any time using the
Preferences command in the Options menu on the LVM control panel. See
“Modifying an Existing File” on page 13 for instructions on opening the
control panel.

Files Included in the Installation

This section describes the individual files included with the package. You
should review this material if you have a specific need to create some
unusual installation setup.

The following files are included:

NOTE: The LVM tool does not appear in the Tools menu even when it is installed
and running. Its functions are invoked by opening an associated device
symbol by double-clicking on it.

lvm.mda This is the main LogicWorks Verilog Modeler tool and in-
cludes the compiler, simulator, and interactive control func-
tions. It should be placed in the Tools directory inside the
main LogicWorks directory. It will be found and loaded auto-
matically when LogicWorks starts up.

Demos This directory contains some LogicWorks design and library
files that demonstrate the use of the Verilog Modeler. It can
be installed in any convenient location.

@LVM Manual.Book Page 11 Tuesday, April 21, 1998 1:50 PM

@LVM Manual.Book Page 12 Tuesday, April 21, 1998 1:50 PM

13

3
Tutorial

This chapter takes you through the various steps involved in creating and
running Verilog simulations using the LogicWorks Verilog Modeler. The
following tutorial sections assume that you have installed the LVM
package and have a general familiarity with LogicWorks. If you are new to
LogicWorks, we suggest that you go through the Tutorial section (Chapter
4) in the LogicWorks 3 manual first.

Modifying an Existing File

To give you a quick introduction to LVM operation, we will first open and
modify one of the demonstration files provided with the package. This will
give you a place to start in working with your own designs.

c Start up LogicWorks in the usual way, if it is not already running.

c Open the design file named V163.cct in the LVMDemos directory.

This file demonstrates a Verilog model for a 74XX163 counter. Note that
the outputs will enter an X state after opening. The Verilog Modeler does
not store the internal state of the model with the design file. Only the
source code is stored, and it is recompiled when the file is opened. Internal
variables will always be reset to their initial states when a design file is
opened. If nothing else is specified, this will be X (unknown).

Refer to “Compiling and Initialization” on page 38 for more information on
variable initialization.

c Try clicking on the CLEAR and LOAD switches and verify that the
model is working and the outputs are counting as expected.

@LVM Manual.Book Page 13 Tuesday, April 21, 1998 1:50 PM

14 Chapter 3—Tutorial

Macintosh–Double-click on the 163 device. The LVM control panel will
appear.

The pop-up menus on this control panel operate independently of the main
program menus; that is, they do not affect any functions of the main
program, and none of the main menus affect the LVM.

c Click on the Show Variables control.

Windows–Double-click on the 163 device. The LVM control panel will
appear:

This control panel is used to view the internal state of the model, to gain
access to the Verilog source code, and to control various options affecting
the model.

c Click on the >> button to enlarge the window to display the variable val-
ues.

This control increases the size of the control panel and displays a table
showing the current values of all internal variables declared in the Verilog
source code. These values are updated as the simulation progresses. Note
that values are displayed only for the particular device instance that is
named in the panel’s title bar. In this version there are no display radix or
other options. For memory variables (i.e., arrays of reg), only the first
location is displayed.

See “Debugging a Verilog Model” on page 39 for a description of variable
display formats.

@LVM Manual.Book Page 14 Tuesday, April 21, 1998 1:50 PM

Modifying an Existing File 15

Macintosh–Click and hold on the File pop-up menu and select the Open
Source to Text Window option. This command will open a new window
using the XEditor tool and display the Verilog source code associated with
this device type.

Windows–Select the Save Source to File then Edit command in the File
menu. This command copies the source text (which is stored internally
with the circuit file) to a standard text file and invokes the selected text
editor. If you have not specified any other editor, Notepad will be used.

The Verilog source code is treated in much the same way as an internal
circuit definition in LogicWorks. The Verilog source is associated with a
specific part type and is the same for all instances of that type. Changing
the source code and recompiling will affect all devices of the same type,
that is, all devices derived from the same library part.

c Scroll the text window down if necessary to locate the statement close
to the bottom of the file:

R = R + 1;

This statement specifies the normal increment that will occur during
counter operation. Change the statement to

R = R + 3;

Note that R is declared as a 4-bit register and that a set of top-level assign
statements are used to copy the register bits to the corresponding output
pins. This version of the Verilog Modeler does not support vectored (i.e.,
multibit) input or output pins. The internal operation of the model can
make use of multibit registers, but you must include statements to interface
these registers to the individual input or output pins.

Macintosh–Click on the close box at the upper left corner of the text
window. In the close dialog box that appears, select the Save and Compile
option. The modified source code will be saved in an attribute field called
Verilog.Src associated with the selected part type. The source code will be
recompiled, and all affected devices will revert to their default values.

Windows–Double-click on the close box on the text editor window and
respond Yes to the Save Changes prompt. When you switch back to
LogicWorks, the updated source file will automatically be loaded into the
circuit and recompiled.

@LVM Manual.Book Page 15 Tuesday, April 21, 1998 1:50 PM

16 Chapter 3—Tutorial

c Operate the CLEAR and LOAD switches in the circuit again and ob-
serve that the counters now count by 3.

Macintosh–Reopen the source code to the text window using the Open
Source to Text Window command again.

Windows–Reopen the source code using the Save Source to File and Edit
command again.

c Locate the same statement modified above and change it to

R = R + blip;

c Close the text window again and allow the source to be recompiled.

Since the variable blip is not defined, this will create a compilation error.
A second text window will be displayed with the error message, which can
be used to locate the error. Under the Options menu on the LVM control
panel are a number of options for redirecting or disabling messages
generated during compilation and execution.

See “Controlling Message Output” on page 37 for more information on
message redirection.

Macintosh–Select the text of the error message, either by dragging across
the text or by triple-clicking in the line containing the error line number.
Press the Enter key on the keyboard to locate the error in the source code.

Windows–The Windows version does not have this error location feature.

c Change the original source back to

R = R + 1;

c Close and “Save and Compile” the model.

Simulating a Circuit with Multiple Verilog Models

In this section, we will look at a sample file that illustrates having two or
more Verilog device models in one circuit.

c Start up LogicWorks in the usual way, if it is not already running.

c Open the design file named 68hc11.cct in the LVMDemos directory.

@LVM Manual.Book Page 16 Tuesday, April 21, 1998 1:50 PM

Simulating a Circuit with Multiple Verilog Models 17

This file demonstrates a Verilog model for a 68HC11 microcontroller and a
separate model for an associated memory device. Depending on the speed
of your machine, you may notice that a status box shows first one Verilog
model, then the other being compiled. The Verilog model is stored with the
circuit file as source code only, and it is compiled as soon as it is needed by
the simulator after the file is opened.

NOTE: The 68HC11 model provided in this example is not a complete simulation
of a commercial 68HC11 device.

c Try clicking on the RESET switch on the diagram to place it in the 1
state.

This action removes the Reset drive from the processor and allows it to
perform its initiation sequence. If you watch the timing diagram, you will
see the FFFE and FFFF addresses output as the 68HC11 fetches the reset
vector. This will be followed by a sequence of instructions being fetched
from memory.

Note that after a moment, another text window will pop up.

This window is displayed to show output from $display statements in the
Verilog source code. $display is a very important construct because it
allows you to trace and debug your Verilog models and generate text output
based on internal variables.

@LVM Manual.Book Page 17 Tuesday, April 21, 1998 1:50 PM

18 Chapter 3—Tutorial

Refer to “The $display System Task” on page 56 for more information on
$display.

c Double-click on the 68HC11 device symbol. The LVM control panel
will appear.

Macintosh–Click on the Show Variables checkbox.

Windows–Click on the >> button to show the variable display.

You will note that this model has many more internal variables than the 163
in the last example!

c Double-click on the RAM 1Kx8 device.

Note that a second LVM control panel appears. This illustrates three
important points regarding control panel operation:

■ You can have as many control panels open at once as there are Verilog
models in the circuit.

■ Each control panel is associated only with a single device instance and
shows variable values only for the device named in its title bar. Since
every device in a simulation can be in a different state, this can be an
important feature in tracing the operation of a circuit.

■ Each model (i.e., each device instance) in the circuit can produce text
output into its own text windows.

Remember that the LVM control panel does not show data for the selected
device in the circuit, but for the specific device instance that it is associated
with, that is, the one named in its title bar.

Creating a Verilog Model Top-Down

In this section, we will look at creating a Verilog model by defining its
symbol first and then entering the text for the internal model. This method
allows you to take advantage of the automatic Verilog header-generation
feature of the LVM.

The most important issue here is to define pins on the device symbol that
exactly match the ports that you wish to define for the Verilog model in

@LVM Manual.Book Page 18 Tuesday, April 21, 1998 1:50 PM

Creating a Verilog Model Top-Down 19

terms of name and pin type (i.e., input, output, or inout). We will use the
DevEditor tool in LogicWorks to create the symbol and define the pins.

Macintosh–““““-click in the Parts palette (that is, hold the ““““ key depressed
while clicking) and use the New Lib command to create a new, temporary
library to receive the parts that you create in this section.

Windows–Click the right mouse button in the Parts palette and use the New
Lib command to create a new, temporary library to receive the parts that
you create in this section.

c Use the Open Lib command to open the LVMLib.CLF library provided
with the LVM package.

Macintosh–Select the part called VerilogBox in the Parts palette. ““““-click
in the palette and use the Edit Part command to open the DevEditor.

Windows–Select the part called VerilogBox in the Parts palette. Click the
right mouse button in the palette and use the Edit command to open this
part in the DevEditor.

The VerilogBox part (and the other items in this library) have a special
primitive type setting which marks them as Verilog models. We can change
the graphics for the symbol and add appropriate pins to suit the specific
application for this part.

See “Verilog Primitive Type” on page 28 for more information about Verilog
primitive type settings.

c Select the DevEditor’s Autocreate Symbol menu command.

c In the Autocreate window, remove any existing text from the Left,
Right, Top, Bottom, and Part Name text boxes.

c Type the single word OUTPUT in the Right box and the word
VCLOCK in the Part Name box.

c Click the Generate button.

You should now see a part symbol like the following in the DevEditor
window:

@LVM Manual.Book Page 19 Tuesday, April 21, 1998 1:50 PM

20 Chapter 3—Tutorial

The remaining (and very important!) task is to set the pin type for the
output pin. The Autocreate Symbol command creates all pins with a type
setting of Input, and all other pins must be manually changed.

c Double-click on the pin name OUTPUT in the pin list on the left. This
will display the pin information palette.

c In the Pin Function pop-up list, select the pin type Output.

c Close the pin information palette.

c Use the DevEditor’s File menu commands to save the new part to the
library you created, under the name VCLOCK.

c Close the DevEditor window.

For more information on pin information settings, see the section "Pin Infor-
mation Palette" in Chapter 11 of the LogicWorks 3 manual.

We will now place the new part in a circuit and use the Verilog Modeler to
create a simple simulation model for it.

c Use the pop-up library list on the Parts palette to select the library con-
taining the new VCLOCK part, if it isn’t selected already.

c Use the New Design command in the File menu to create a new, empty
circuit.

c Double-click on the VCLOCK part and place one of them in the circuit.

c Select the pointer cursor in the tool palette.

c Double-click on the device that you just placed in the circuit to open the
Verilog control panel.

Macintosh–Select the New Source command in the LVM panel’s File
menu.

Windows–Select the Generate Templace then Edit command in the File
menu on the LVM panel. In some versions of the LVM, it may be necessary
to click on the Edit button on the control panel to open the file.

@LVM Manual.Book Page 20 Tuesday, April 21, 1998 1:50 PM

Creating a Verilog Model Bottom-Up 21

You should now be looking at an autogenerated source file like the
following:

module VCLOCK(OUTPUT);
output OUTPUT;

endmodule.

This is a complete but nonfunctional shell for a Verilog model for this
device. Just to complete this example, try adding to this source file until
you have a file like the following:

module VCLOCK(OUTPUT);
output OUTPUT;
reg OUTPUT;

 initial OUTPUT = 0;

 always #10 OUTPUT = !OUTPUT;

endmodule.

c Close the source code and allow it to be compiled.

c Name the output signal of the VCLOCK device using the Pencil tool so
that it gets displayed in the Timing window.

c Click on the Reset button on the LVM control panel to restart the model.

You will now see an alternating waveform appear in the timing display. The
high and low times should match the 10-unit delay specified in the Verilog
source code. Note that pressing the Reset button on the LVM control panel
causes the Verilog model to be restarted; that is, any initial sections will
be executed.

Creating a Verilog Model Bottom-Up

In this section, we will create a Verilog model using an external text editor
and then create a LogicWorks symbol to match it. The important issue here
is to create a symbol that exactly matches the Verilog source in terms of the
naming and functions of pins.

@LVM Manual.Book Page 21 Tuesday, April 21, 1998 1:50 PM

22 Chapter 3—Tutorial

It is also important to note that the LVM always keeps the Verilog source
code stored as part of the design file. Any association with an external file
is strictly temporary for loading or editing purposes.

NOTE: There is no automatic mechanism in the LVM package that will generate a
symbol for you from a source file. One procedure is suggested here,
although there are a number of ways to bring source code in for a model
by using file and clipboard operations described elsewhere in this manual.

Macintosh–Select the XEditor command in the Tools menu to bring up an
empty text window. Use the Open Text command in the File menu to open
your Verilog source file. You can use the file named sample.v provided for
this example.

Windows–Use the Notepad application, or whichever text editor you are
using, to open your Verilog source file. Use the file named sample.v
provided for this example.

NOTE: You may wish to make a backup copy of your Verilog source file before
proceeding. The following steps require making some temporary edits to
the existing file.

c If necessary, edit the module line in the file so that all the pin names ap-
pear on one line. Select the text for the pin names and use the Copy com-
mand in the Edit menu to copy this text to the clipboard.

c Switch to LogicWorks and select the DevEditor tool in the Tools menu.

c Select the DevEditor’s Autocreate Symbol command.

Macintosh–Click in the Right Pin Names box and use the ““““-V key
combination to paste the pin names copied from the source.

Windows–Click in the Right Pin Names box and type cccc-V to paste the
pin names copied from the source.

c At this point, you can optionally use standard cut-and-paste techniques
to move some of the pin names to alternate sides of the symbol. This has
no effect on the association with the Verilog model.

c Click the Generate button on the Autocreate window.

@LVM Manual.Book Page 22 Tuesday, April 21, 1998 1:50 PM

Creating a Verilog Model Bottom-Up 23

You should now see a symbol with pin names matching your Verilog
source. The remaining task is to set the pin function of each pin according
to the following table:

The Autocreate Symbol command has set all pin functions to be Input, so it
is only necessary to change the ones that need to match an "output" or
"inout" port in the module header.

c Double-click on the first pin in the list that needs to be changed to open
the Pin Information Palette.

c Select the appropriate pin function for that pin.

c Press the Enter key to move to the next pin in the list, or simply click on
the next pin in the list that you wish to change.

c When all pin functions have been set, close the Pin Information Palette.

c Save the new part symbol to a suitable library and close the DevEditor
window.

c Create a new, empty LogicWorks circuit using the New Design com-
mand in the File menu.

c Place one of the new symbols in the circuit and return to the pointer cur-
sor.

c Double-click on the new device to display the LVM control panel.

Macintosh–In the LVM control panel’s File menu, select the Load Source
from File command and select your original Verilog source file. This will
load the contents of the selected file into the device. Note that there is no
permanent association with the file. Later modifications to the file will have
no effect on the simulation.

Windows–In the LVM control panel’s File menu, select the Status of
Source/File command. Click on the Browse button and locate the external
source file. The status indicator should now show that the file is newer than
the source in the part. Click on the Upload <-- from File button to load the

Verilog Declaration LogicWorks Pin Function
input Input
output Output
inout Bidirectional

@LVM Manual.Book Page 23 Tuesday, April 21, 1998 1:50 PM

24 Chapter 3—Tutorial

text in the file into the design.

c Select the Compile command in the LVM’s File menu to compile the
new source. If there is any mismatch between the pins on the symbol
and the ports declared in the source, compiler error messages will be
generated.

Saving a Verilog Model with a Library Part

In this section we will see how to save a part into a LogicWorks symbol
library, complete with its Verilog source code. This will allow other users
of the part to just place it in their own circuits and start simulating
immediately.

NOTE: Users with access to the DesignWorks professional circuit design package
can make use of the Save to Lib command to save a fully defined Verilog
part to a symbol library. LogicWorks does not have this command, so we
have to use the procedure defined here.

This procedure makes the following assumptions:

■ You have your Verilog source code ready, either in an external text file
or in an existing LogicWorks circuit.

■ You have the symbol with which you wish to associate the source code
already created and in a library.

c Copy the Verilog source code that you wish to associate with the part
onto the clipboard. If the source code exists in an external text file, you
can do this with any text editor. If the source code is already in a symbol
in a LogicWorks design, open the source code using the methods de-
scribed in the first tutorial section. Then select the entire source and se-
lect the Copy command in the Edit menu.

c Move to the Parts palette and open or select the library containing the
destination part.

Macintosh–Select the part in the Parts palette. ““““-click in the palette and

@LVM Manual.Book Page 24 Tuesday, April 21, 1998 1:50 PM

Saving a Verilog Model with a Library Part 25

use the Edit Part command to open the DevEditor.

Windows–Select the part in the Parts palette. Click the right mouse button
in the palette and use the Edit command to open this part in the DevEditor.

c Select the DevEditor’s Part Attributes command.

c Select the Verilog.Src attribute field in the field list.

NOTE: The DevEditor gets its list of attribute fields from the current design. If the
Verilog.Src attribute field does not appear in the list, close the DevEditor,
open one of the Verilog sample circuits provided, or one of your own, and
try again.

Macintosh–Type ““““-V to paste the source code on the clipboard into the
Verilog.Src attribute field.

Windows–Type cccc-V to paste the source code on the clipboard into the
Verilog.Src attribute field

c Save the part back to the library.

@LVM Manual.Book Page 25 Tuesday, April 21, 1998 1:50 PM

@LVM Manual.Book Page 26 Tuesday, April 21, 1998 1:50 PM

27

4
Using the Complete
Program

This chapter provides background and reference information on how
Verilog models work with the overall LogicWorks simulator, and presents
specific procedures for creating and working with Verilog inside
LogicWorks.

Design Organization with the Verilog Modeler

In effect, the LogicWorks Verilog Modeler provides an alternate way of
defining the “internal circuit” for a device symbol in a LogicWorks
schematic. The way the Verilog model definition is stored and updated in a
design is analogous to the way subcircuits are created and modified in a
design using the “physical hierarchy” mode. In particular, note the
following points:

■ The Verilog model is associated with a device type (i.e., a symbol
definition), not an individual device instance. When you double-click
on a Verilog device symbol and modify its internal definition, you are
affecting all other devices of the same type in the design.

■ When you modify the Verilog source code for a device type, you have
in effect changed the definition of that symbol. It will no longer be
considered to be the same as the symbol in the library that was selected
when the device was originally placed.

■ The Verilog source code is kept in a device attribute field called
Verilog.Src. However, the data is actually stored with the type
definition, not with each device instance. Modifying the Verilog.Src
attribute field for a given instance will have no effect on the Verilog

@LVM Manual.Book Page 27 Tuesday, April 21, 1998 1:50 PM

28 Chapter 4—Using the Complete Program

model. The Verilog source definition can only be changed by using the
appropriate LVM commands, or by setting the Verilog.Src attribute
field in the symbol itself, using the DevEditor.

■ Because the Verilog source code is stored in its entirety in an attribute
field, it is limited to 32,000 characters.

■ In this version of the LVM, Verilog source code can only be used to
create an internal definition of a device. There is no way to make a
stand-alone Verilog simulation without a schematic or to simulate (or
stimulate) part of a design using Verilog without using a “parent”
symbol.

■ When a design containing Verilog models is saved to a file, only the
Verilog source itself is saved. The compiled data and simulation state is
lost when the design is closed. The source code is recompiled when the
design file is opened.

Creating a Verilog Device Symbol

This section gives you the background information and procedures you
need if you want to create symbols from scratch that will be associated
with a Verilog model in a LogicWorks schematic.

Verilog Primitive Type

LogicWorks uses the concept of a primitive type to distinguish different
types of symbols that receive different internal handling. For example, the
SUBCCT primitive type denotes symbols that can have an internal circuit,
and the AND primitive type denotes symbols that will be handled by the
logical AND simulation model in the Simulator.

The association between the LVM tool and the device symbol on the
schematic is also made by primitive type. That is, any user actions and
simulator events affecting a symbol with primitive type VERILOG will be
intercepted by the LVM.

@LVM Manual.Book Page 28 Tuesday, April 21, 1998 1:50 PM

Creating a Verilog Device Symbol 29

NOTE: Because the LVM package was developed after the last major release of
LogicWorks, the LogicWorks menus and options that deal with primitive
types do not yet have an entry for the VERILOG primitive type. For this
reason, a raw primitive type number 47, which has been assigned for this
purpose, must be used at this time. Future versions of LogicWorks will
have this item added as a text entry in the relevant menus and displays.
For now, just treat 47 as a magic number that means “Verilog”.

To set the primitive type for a Verilog parent symbol, you can do one of the
following:

■ Use one of the sample symbols provided in the symbol library included
with the LVM package as a basis for your symbol. You can freely add,
delete, or modify pins or attributes as needed for your application.

■ When creating the symbol in the DevEditor, set the primitive type as
follows:

• Select the Subcircuit & Part Type command in the DevEdit menu
(Macintosh) or the Subcircuit/Part Type command in the Options
menu (Windows).

• Choose the Primitive Type option.

• In the pop-up menu that appears, select the Other... option at the
bottom of the list. (Note: A VERILOG selection will be added to
this list in an upcoming maintenance release of the DevEditor.)

• Enter the value 47 for the VERILOG primitive type and click OK.

• Click Done on the Subcircuit and Part Type box.

• Edit and save the symbol in the usual way.

To test that the primitive type of a symbol has been set correctly, simply
place an instance of the symbol on a schematic and double-click on it. The
LVM control panel should be displayed instead of the usual response by the
Schematic package.

Port Interface

All communication between a Verilog model and the rest of the design is
through the pins or “ports” on the parent symbol. Creating a correct linkage
between the ports defined in the Verilog source code and the pins on the
device symbol is essential to correct operation.

@LVM Manual.Book Page 29 Tuesday, April 21, 1998 1:50 PM

30 Chapter 4—Using the Complete Program

Port-to-Pin Association

The correct port-to-pin association is the single most important issue in
attaching a Verilog model to a device symbol. Here are the rules that must
be followed to ensure that this is accomplished.

■ The ports defined in the Verilog source code are matched with the pins
on the parent symbol by name. Definition order is of no significance.
This implies the following naming rules:

• Only valid Verilog name characters can be used in applying pin
names to the parent symbol.

• Pin names must not exceed the maximum length of 16 characters
imposed by LogicWorks.

• Duplicate pin names are not allowed. The DevEditor will allow
duplicate pin names when the pins are inside different bus pins, but
all pin names must be completely unique for use with the LVM.

■ You can use bus pins on the parent symbol to group pins by function, if
desired. The bus pin itself is completely ignored by the LVM; pin-to-
port association is made strictly by the name of the individual internal
pins.

■ All ports declared in the Verilog source must be single-bit. Vectored
ports are not supported in this version.

■ The pin type setting that is used on each pin when the symbol is
created in the DevEditor must correspond to its declaration in the
Verilog source code, according to the following table:

DevEditor Pin Type Setting Verilog Declaration
Input input
Output output
Tristate output
Bidirectional inout
Open Collector output
Open Emitter output
Latched Input input
Latched Output output
Clocked Input input
Clocked Output output
Clock Input input
All others ignored

@LVM Manual.Book Page 30 Tuesday, April 21, 1998 1:50 PM

Creating a Verilog Device Symbol 31

Setting Output Port Values

The Verilog language definition does not allow direct assignment of values
to output ports from within behavioral constructs. For this reason, it is
always necessary to use one of two techniques to set output port values:
continuous assignment or port-register aliasing.

Continuous Assignment

A continuous assignment statement (i.e., the assign keyword) can be used
to map the reg variables used in the behavioral code to the output ports.

Here is a simple example of an oscillator device with a single output pin.
Note how the reg variable osc is used for all internal calculations, and its
value is continuously assigned to the output pin OSCOUT:

module OSC(OSCOUT);

// Declare the port in the usual way

 outputOSCOUT;

// Declare a "reg" for internal use

 reg osc;

// Continuously assign the reg to the output

 assign OSCOUT = osc;

// Internal processing to generate the values

 initial osc = 0;

 always #1 osc = !osc;

endmodule

Port-Register Aliasing

The LVM also supports the concept of port-register aliasing, that is,
creating an output port and a reg variable with the same name. This allows
you to use the port name in the behavioral code and creates an automatic
transfer of any value changes to the output port.

@LVM Manual.Book Page 31 Tuesday, April 21, 1998 1:50 PM

32 Chapter 4—Using the Complete Program

The previous example, modified to use port-register aliasing, follows:

module OSC(OSCOUT);

// Declare the port in the usual way

 outputOSCOUT;

// Declare a "reg" for internal use

 reg OSCOUT;

// Internal processing to generate the values

 initial OSCOUT = 0;

 always #1 OSCOUT = !OSCOUT;

endmodule

Mapping Multibit Registers to Ports

This version of the LVM does not support vectored (multibit) ports. Each
port in the Verilog module header must correspond to a single pin on the
parent symbol, which will in turn be connected to a single signal line.

For this reason, the continuous assignment prescribed in the previous
section can be extended to map an internal, multibit register to multiple
output ports, as in the following example:

module OSC2(PHI_A, PHI_B);

// Declare the ports in the usual way

 outputPHI_A;

 outputPHI_B;

// Declare a 2-bit "reg" for internal use

 reg[1:0] osc;

// Continuously assign the reg to the outputs

 assign PHI_A = osc[0];

 assign PHI_B = osc[1];

// Internal processing to general the values

 initial osc = 0;

 always #1 osc = osc + 1;

endmodule

@LVM Manual.Book Page 32 Tuesday, April 21, 1998 1:50 PM

Operation 33

For more information on ports from the point of view of the Verilog source
code, see “Ports” on page 61.

Operation

This section describes the mechanics of creating, editing, and controlling a
Verilog simulation model.

Opening the LVM Control Panel

The LVM control panel can be opened for a specific device instance just by
double-clicking on the device on the schematic. Note the following points
regarding the association between the LVM control panel and the device in
the circuit:

■ The name of the device that was opened will be displayed in the title
bar of the control panel.

■ In general, the commands connected with variable display, message
output, and simulation affect only the specific device instance
associated with this panel. Commands affecting the Verilog source
code and compilation will affect all other instances of the same type, as
described earlier in this manual.

■ You can have any number of LVM control panels open at once to
display and control multiple devices in a design. Closing a control
panel has no effect on the simulation of the device.

Opening the Verilog Source Code

Macintosh–Select the Open Source to Text Window command in the File
menu on the LVM control panel. This command opens the current contents
of the Verilog.Src attribute field to a text editor window. The text can then
be edited using the standard features available in the XEditor tool. When
the text window is closed, if any changes have been made, you will be
prompted for the desired save and recompile actions.

@LVM Manual.Book Page 33 Tuesday, April 21, 1998 1:50 PM

34 Chapter 4—Using the Complete Program

IMPORTANT: The XEditor tool on the Macintosh has the standard Save and Save As
commands in the File menu. These commands allow you to save data to
disk files, but do not affect the Verilog.Src attribute. To update the
Verilog.Src attribute field, you must close the window using the close box
or Close command and respond to the close dialog box.

Windows–Select the Save Source to File then Edit command in the File
menu on the LVM control panel. This command saves the current contents
of the Verilog.Src attribute field to a temporary text file and then opens the
file using your text editor. When the text editor is closed and you switch
back to LogicWorks, you will be prompted for the desired save and
recompile actions.

Creating a New Verilog Model

The LVM has the ability to automatically create a “shell” of a Verilog
source code file for a device that you have placed in a circuit. This is
especially useful when you create a new symbol that has never had a model
associated with it, because it saves typing the port names and associated
declarations. The generated file will include the module line with all the
ports defined, declarations for the ports, and an endmodule statement. This
can be used as a starting point in defining your own model.

Macintosh–Select the New Source command in the LVM control panel.
The autogenerated Verilog source file will be displayed in the XEditor. If
the device already has source code associated with it, you will be prompted
before the old source code is replaced.

Windows–Select the Generate Template then Edit command in the File menu
on the LVM panel. If the device already has source code associated with it, you
will be warned before the old source is replaced. The new source code will be
saved to a temporary file and opened in the text editor.

Selecting a Text Editor (Windows Only)

The LogicWorks Verilog Modeler package relies on having a text editor
available for creating and modifying source code. If you don’t make any
other selection, operations that require a text editor will use the standard

@LVM Manual.Book Page 34 Tuesday, April 21, 1998 1:50 PM

Operation 35

NotePad application. You can change this selection at any time using the
Preferences command in the Options menu on the LVM control panel.

Using an External Text Editor

Verilog source code for use with the LVM can be created by using any
external text editor, although some manual operations are necessary to
transfer the text into the model. The commands in the File and Edit pop-up
menus in the LVM panel provide straightforward methods of importing and
exporting the source code text.

Macintosh–Source code from an external text file can be loaded into a
device by using the Load Source from File command. This command
displays a standard file Open box allowing you to select a source text file.
This file will be loaded in its entirety into the Verilog.Src attribute and will
replace any existing source code. In this version of the LVM, there is no
permanent linkage between the device symbol in the design and any
external text files. Whenever you load source code into a device model, it is
copied into the Verilog.Src attribute for compilation. Future changes to the
external text file will have no effect on the design.

NOTE: The source is not automatically recompiled. You must use the Compile
command to recompile it.

Windows–In the LVM control panel’s File menu, select the Status of
Source/File command. Click on the Browse button and locate the external
source file. The status indicator should now show that the file is newer than
the source in the part. Click on the Upload <-- from File button to load the
text in the file into the design.

Saving Source Code to an External File

Macintosh–Select the Save Source to File command. This command
displays a standard file Save box allowing you to create a destination file on
your disk. The current contents of the Verilog.Src attribute will be saved to
this file. The device’s Verilog.Src attribute, compilation status, and
simulation status are unaffected.

@LVM Manual.Book Page 35 Tuesday, April 21, 1998 1:50 PM

36 Chapter 4—Using the Complete Program

Windows–Select the Save Source to File then Edit command. This
command will open the existing source code, using the selected text editor.
You can then use the text editor’s Save As file command to save the source
code to any desired location.

Transferring Source Code Via the Clipboard

In some cases, it may be desirable to move source code quickly into or out
of a model without using a text editor. You can do this by using the
commands in the Edit menu. The Source to Clipboard command copies the
contents of the Verilog.Src attribute field to the clipboard.

The Clipboard to Source command copies the contents of the clipboard to
the Verilog.Src attribute field. If the device already has source code
associated with it, you will be prompted before the old source code is
replaced.

Compiling the Verilog Model

The Verilog source code must be compiled into an internal executable form
before any simulation can be performed. Note that the compilation process
is performed completely separately for each part type.

The following actions will cause the source code for a given part type to be
compiled:

■ Selecting the Compile command in the File menu in the LVM control
panel.

■ Closing a modified source file.

■ Performing any simulator action that would cause a device with
uncompiled source code to be reevaluated.

Compilation Error Messages

When you compile a Verilog source file, error messages may be produced
for illegal syntax, incorrect port-to-pin matching, and so on.

Macintosh–By default, compiler error messages are directed to an XEditor
text window. This output can be redirected to a file or message box by

@LVM Manual.Book Page 36 Tuesday, April 21, 1998 1:50 PM

Operation 37

using the Compile Messages command in the Options menu.

Windows–By default, compiler error messages are directed to a scrolling
text window. This output can be redirected to a file or message box by
using the Messages command in the Options menu.

Locating an Error in the Source Code

Each compilation error is preceded by the line and column number of the
offending text.

Macintosh–For any error message currently displayed in an XEditor
message window, you can select the text of the message and press the Enter
key on the keyboard. The LVM tool will interpret the number following the
word line as a line number, open the Verilog source to another XEditor
window, and go to the indicated line.

Windows–The line number displayed in the error message can be used with
a “Go To Line” feature in many text editors.

Controlling Message Output

The LVM can generate numerous textual messages. These are divided into
three groups summarized in the following table.

A number of commands are available that allow you to control message
output.

NOTE: These commands affect only message output associated with the
particular device instance that was double-clicked on to open the control
panel.

Message Type Usage Default Destination
Compilation mes-
sages

Syntactical errors, un-
defined labels, mis-
matched pins, etc.

Macintosh: Text editor
Windows: Scrolling text box

Execution mes-
sages

$display statement
output

Macintosh: Text editor
Windows: Scrolling text box

Internal errors Code errors, out-of-
memory conditions,
etc.

Dialog box

@LVM Manual.Book Page 37 Tuesday, April 21, 1998 1:50 PM

38 Chapter 4—Using the Complete Program

Macintosh–The three Messages commands in the Options pop-up menu in
the LVM control panel are used to control redirection of message output to
text editor windows, file, dialog box, or none.

Windows–The Messages command in the Options menu in the LVM
control panel allows you to control the redirection of message output.

NOTE: If you close a text window that is being actively used to show $display
output, further output from that device instance will be disabled. To
reenable it, use the Execution Messages command in the Options pop-up
menu in the LVM panel.

Simulation with the Verilog Modeler

Once a Verilog model is created and compiled, it can be simulated in much
the same way as any other LogicWorks symbol. This section covers issues
of interaction between the internals of a Verilog model and the LogicWorks
Simulator.

Compiling and Initialization

The following points should be noted concerning the initialization of a
Verilog model:

■ When a design containing Verilog models is saved to a file, only the
Verilog source itself is saved. The simulation state is lost when the
design is closed. The source code is recompiled when the design file is
opened, so all variables will revert to their default state regardless of
the state of the rest of the design. When you open a file and start
simulating, you should use the Clear Simulation command in
LogicWorks’ Simulate menu to reset all models to their initial states.

■ When a Verilog model is compiled, all internal variables are set to an X
(Don’t Know) state by default. Other values will only be set as
explicitly specified in the source code.

■ When the Reset button on the LVM control panel is pressed or a Clear

@LVM Manual.Book Page 38 Tuesday, April 21, 1998 1:50 PM

Simulation with the Verilog Modeler 39

Simulation command is executed, the following steps are taken:

• All execution threads are terminated. All pending events and
assignments are cleared.

• All variables are reset to their default states.

• All initial and always blocks are restarted.

Debugging a Verilog Model

A number of tools are available to assist in debugging your Verilog code.

Single-Stepping the LogicWorks Simulator

There are no commands available to single-step the internal statements of a
Verilog model. However, the LogicWorks Single Step command can be
used to execute all the activity scheduled at one time step and then stop. In
effect, one Single Step command tells the Verilog model to execute all
active “threads” (i.e., parallel processes) until they block (i.e., specify a
delay or wait for some other action) or terminate.

IMPORTANT: The LVM uses “zero-delay” events to pass internal values to output pins
on the parent symbol. Thus, when using the Single Step command, you
will frequently see two steps executed at the same time. This is normal.

$display Statements

Standard Verilog $display statements can be used to display variable
values at any point in the execution of the model. Output generated by
$display statements is by default displayed in a text editor window. This
can be disabled or redirected to a file by using the commands in the
Options pop-up menu on the LVM control panel.

NOTE: If you close a text window that is being actively used to show $display
output, further output from that device instance will be disabled. To
reenable it, use the Execution Messages command in the Options pop-up
menu in the LVM panel.

@LVM Manual.Book Page 39 Tuesday, April 21, 1998 1:50 PM

40 Chapter 4—Using the Complete Program

See “The $display System Task” on page 56 for a complete description of
the $display statement.

Simulation Value Display

The variable display on the LVM control panel allows you to display all
internal variables of the model as it executes. Note that this display shows
the values associated with the device instance that was double-clicked on to
open the LVM panel. Obviously, each instance of a given device type can
be in a different simulation state.

Macintosh–The variable display is opened by checking the Show Variables
checkbox. You can control whether input ports and output ports are
displayed by using the Show Input Ports and Show Output Ports
checkboxes in the display.

Windows–The variable display is opened by clicking on the >> button. You
can control whether input ports and output ports are displayed by using the
Show Input Ports and Show Output Ports commands in the Options menu.

Here are the format rules for this display:

■ The “Scope” column shows the definition scope of the variable. In
most cases this will be the module name, but it may also show the
name of a named begin/end block with local variables.

■ The “Value” column is updated immediately when a variable changes
value. Integer and Time variables are shown in decimal; all others are
in hexadecimal. There are currently no display radix options.

■ For memory variables, only the first location is shown. There is no way
to display the other locations in this display.

■ By default, input and output ports are not shown in the variable list.
They can be added by enabling the Show Input Ports or Show Output
Ports options.

■ There is no way to select display order or to remove variables from the
display in this version.

@LVM Manual.Book Page 40 Tuesday, April 21, 1998 1:50 PM

Simulation with the Verilog Modeler 41

User Interrupt

Using the programming constructs in Verilog, it is quite possible to create
an infinite loop in a model. This effectively brings the entire system to a
halt because it prevents any other model or any other LogicWorks function
from operating. A common example is an always loop with no delay
specified, as in the following:

always clk = !clk;

The Verilog simulator executes continuously until it encounters some
delay, so this loop will never break.

Macintosh–Press ““““-. (command-period).

Windows–Press the eeee key.

Depending on the complexity of the model, you may have to hold the key
down for a moment before the model reaches a point in its processing
where it can break. This effectively terminates execution of the model until
a Reset or Clear Simulation is done.

Copying Variable Values to the Clipboard

The LVM allows you to copy the current variable values from the Show
Variables display onto the clipboard in text form. You can do this to help
create documentation of a design or to provide a “snapshot” of the state of
a model for debugging purposes.

The Copy Variables command copies the selected items in the Show
Variables display to the clipboard. If Show Variables is disabled, this
command will be disabled. Items in the variable display can be selected by
clicking on them, and any rectangular group of cells can be selected by
holding the Shift key. The Select All Variables command selects all the
cells in the Show Variables display. If Show Variables is disabled, this
command will be disabled.

Resetting a Single Model

The Reset button on the DVM control panel executes a reset operation on
only the specific device instance associated with the control panel.

@LVM Manual.Book Page 41 Tuesday, April 21, 1998 1:50 PM

42 Chapter 4—Using the Complete Program

Reset causes the following steps to be taken:

■ All execution threads are terminated. All pending events and
assignments are cleared.

■ All variables are reset to their default states.

■ All initial and always blocks are restarted.

Selecting the Clear Simulation command in the LogicWorks Simulate
menu also executes a Reset operation on all Verilog models in the design.

@LVM Manual.Book Page 42 Tuesday, April 21, 1998 1:50 PM

Part II
Verilog Language
Support

The following chapters describe the Verilog language as implemented in
the LogicWorks Verilog Modeler. They are intended as a guide for getting
started with the language rather than as an exhaustive language reference.

Verilog is a language that was originally intended as an input mechanism
for the proprietary Verilog simulator, now sold by Cadence Design
Systems, Inc. In order to encourage wider use of the language, Cadence
passed it into the public domain, making it possible for a large number of
vendors to create products supporting the language. The language is now
documented, reviewed, and evangelized by Open Verilog International, an
open industry group. Verilog is now widely used for describing hardware
systems for simulation and synthesis purposes.

Verilog will look fairly familiar to anyone who has developed a program in
the popular Pascal programming language, as much of its syntax was
derived from that source. However, Verilog adds important elements
needed to describe hardware, such as unknown and high-impedance values,
parallel blocks, and so on.

The full Verilog language supports circuit descriptions in both structural
(i.e., gates and flip-flops) and behavioral form (i.e., procedure-oriented).
Only the behavioral parts of the language are implemented in this version
of the LVM. Gate- and switch-level modeling, wire variables, module
hierarchy, and other structural concepts are not supported.

This manual describes only the supported language features.

For a complete description of the language, refer to the Verilog Hardware
Description Language Reference Manual published by Open Verilog Inter-
national.

@LVM Manual.Book Page 43 Tuesday, April 21, 1998 1:50 PM

@LVM Manual.Book Page 44 Tuesday, April 21, 1998 1:50 PM

45

5
Structure of a
Verilog File

This chapter presents a simple example to illustrate the overall structure of
a Verilog source file. The term file is used loosely here because, in the
LVM, the Verilog source code is actually stored in LogicWorks attributes as
part of a larger circuit design. In this chapter, we use the term file to refer to
a single block of Verilog source code associated with a single LogicWorks
symbol.

Module Organization

A module block starting with the keyword module is the basic unit of
organization, similar to a procedure or subroutine in a programming
language. In the LVM implementation of Verilog, a single file can contain
only one module. The module header specifies the signal interface for the
module, that is, the correspondence between the module’s inputs and
outputs, and the pins on the parent LogicWorks symbol.

@LVM Manual.Book Page 45 Tuesday, April 21, 1998 1:50 PM

46 Chapter 5—Structure of a Verilog File

For example, consider the module shown here, which implements a
simplified D-type flip flop:

module DFF(CLK, D, Q);

input CLK; // Declare clock as input

input D; // Declare data as input

outputQ; // Declare Q as output

reg Q; // Associate Q with a reg

// Give Q an initial value of 0

initial Q = 0;

// Whenever a positive edge is seen on CLK,

// assign D input to Q output

always @(posedge CLK)

begin

Q = D;

end

endmodule

The rest of this chapter expands on the points illustrated in this example.

@LVM Manual.Book Page 46 Tuesday, April 21, 1998 1:50 PM

Declaration Section 47

Module Header

A module always begins with the keyword module, which is followed by
the module name. The module name should be the same as the library type
name of the parent symbol (as it appears in the Parts palette) in order to
make the association between symbol and model clear, but this is not
enforced.

A list of module ports, enclosed in parentheses, follows the type name.
There must be a one-to-one correspondence between the pins on the parent
device symbol and the ports declared here, except for bus pins. Ports are
matched with the pins on the parent symbol by name, not by order.

See“Port Interface” on page 29 for details on port name matching.

The module header is terminated by a semicolon.

Declaration Section

Following the module header is a series of declarations that define the
nature of the module’s ports and any other variables to be used internally.
The complete description of possible declarations is given in “Data Types”
on page 59.

In our example, two of the ports are declared as inputs, and one as an
output. Ports can also be of type inout, corresponding to bidirectional pins
on the parent symbol. The port declaration must correspond in type (i.e.,
input/output/inout) to the pin type of the parent device symbol. Vectored
ports (i.e., more than one bit wide) are not supported.

In the example, note that Q is declared twice, once as an output and once
as a reg. This is a special case known as port-register aliasing, which is
used for output ports that are to be assigned values in behavioral Verilog
code. Since behavioral code can only work with reg variables, this creates
an automatic link between a reg and an output port with the same name.
Any value assigned to the reg will appear at the corresponding output port.

@LVM Manual.Book Page 47 Tuesday, April 21, 1998 1:50 PM

48 Chapter 5—Structure of a Verilog File

Statement Section

The actual activity of the model is specified in one or more statements that
make up the balance of the module source code.

At the topmost nesting level within a module (that is, not inside any other
block), the LVM version of Verilog supports only three types of statements:

■ The continuous assignment statement. This type of statement starts
with the keyword assign and is used to apply a value in a reg variable
to an output or inout port.

■ The initial statement. This type of statement is executed only once
when the module is first instantiated. It is used to set initial values for
variables and take any actions that should happen only once during the
life of the module, regardless of input conditions.

■ The always statement. This type of statement is executed repeatedly
for the entire life of the module. It is in effect an “infinite loop”, which
repeatedly performs assignments and other behavioral actions.
Typically, the always statements in a module contain the main body of
the behavioral code that defines the operation of the module.

Note that always and initial statements are identical in structure and
syntax. The only difference is that the former is applied repeatedly and
indefinitely, whereas the latter is applied exactly once. In the LVM
implementation, continuous assignment statements are restricted to the
specific usage already described.

In this example, a begin/end block has been used after the always. This
is not necessary in this case, because the begin/end contains only one
statement. It is included here to illustrate how you can use begin/end to
encapsulate multiple behavioral statements into a single block that can be
used with always or initial.

A module can contain any number of each of these three types of
statements, mixed in any order. In effect, all initial and always blocks
are executed in parallel and can be thought of as representing a separate
hardware subunit of the module. These subunits can communicate by
referring to the same variables or by using events, which are discussed in
“Events” on page 90.

@LVM Manual.Book Page 48 Tuesday, April 21, 1998 1:50 PM

Module Structure Summary 49

In the preceding example, the text @(posedge CLK) blocks the execution
of the always statement until the specified event occurs. In this case, when
the CLK input changes from a low to a high level, execution proceeds, and
the assignment Q = D is executed.

Module Termination

The module always ends with the keyword endmodule.

Module Structure Summary

In this chapter we have looked at the overall structure of a Verilog
behavioral model. You should now see the relationship between the
contents of a model and the structure of the real hardware it represents.
Each always or initial block represents a piece of circuitry that can
operate independently in parallel, and each assign statement represents an
output buffer. For example, an initial block might be used to express the
power-up logic of a circuit, and a couple of always blocks might represent
a clock generator circuit and a bus interface, which can work independently
in parallel.

Especially if you have software programming experience, you may find
some of the concepts of parallel operation a bit hard to grasp at first.
However, just keep in mind that what we are really doing is describing a
digital system that in the end will consist of standard logic elements wired
together on a board or chip.

@LVM Manual.Book Page 49 Tuesday, April 21, 1998 1:50 PM

@LVM Manual.Book Page 50 Tuesday, April 21, 1998 1:50 PM

51

6
Language Syntax

This chapter describes the lowest-level building blocks of the Verilog
language, such as lines, constants, and statements. These elements are
essential in constructing a complete model using the larger structures
described in later chapters.

White Space and Comments

Blanks, tabs, and line terminators (that is, a carriage return or line feed) are
considered as “white-space” characters; they act as separators between
other items and are otherwise ignored.

Verilog has two forms of comment block. A single-line comment can be
inserted using “//” in two ways:

// This is a comment line

or

clk = 1; // The rest of this line is a comment

For comment blocks spanning any number of lines, the “/* */” form can be
used:

/*

 The following section illustrates how the

 disable keyword is used to terminate execution

 of a block.

*/

@LVM Manual.Book Page 51 Tuesday, April 21, 1998 1:50 PM

52 Chapter 6—Language Syntax

Statement Separators

Verilog statements can span any number of lines. The semicolon is used to
terminate Verilog statements. It should only be used after a single
statement, not between compound statements like begin/end blocks. For
example:

begin

 a = 1;

 b = 2;

end

begin

 c = 3;

end

In general, a semicolon is not used between two Verilog keywords, in this
case, between end and begin.

Numbers

Numbers are assumed to be expressed in decimal unless otherwise
specified. Optional size (width in bits), base (binary, octal, decimal, or
hexadecimal), and sign specifiers can also be used to specify constant
numbers, as shown in these examples:

1234 // An unsized decimal constant

16'b011 // A 16-bit number 0000 0000 0000 0011

'b1 // An unsized binary number

12'h3ab // A 12-bit hexadecimal number

24'o777 // A 24-bit octal number

'D12 // An unsized decimal number

-4'b11 // A negative binary number

The base specifier letter and the hexadecimal digits a to f can be uppercase
or lowercase. In addition, underscore characters can be inserted between

@LVM Manual.Book Page 52 Tuesday, April 21, 1998 1:50 PM

Strings 53

the digits of a number without affecting its value. This allows you to break
up long sequences of digits for readability, as in this example:

16'b1011_1111_0001_0101

In the LVM implementation, unsized numbers are stored as 32-bit values,
and 32 is the maximum size specification.

Unknown and High-Impedance Constants

The letters X and Z (uppercase or lowercase) can be used to express
unknown and high-impedance values, respectively. They are valid only in
binary, octal, and hexadecimal constants and affect only the bit positions
corresponding to their position in the constant. For example,

'HX34 // Equals 'bxxxx_0011_0100

'o7z // Equals 'b111ZZZ

A question mark can be used as an alternative to Z to indicate a high-
impedance value. This is intended primarily for use with the casez and
casex statements to indicate a don’t care value. See “Using Don’t Care
Case Values” on page 81.

Strings

A string is any sequence of ASCII characters enclosed by double quotes. A
string must be completely specified on one line. To insert nonprinting
characters or double quotes into a string, the escape character \ can be
used, as shown in this table.

\n A new line character. This will be either a carriage return or line feed,
as appropriate for the host system.

\t A tab character.
\\ A backslash character.
\” A double quote character.
\nnn The ASCII character with the given code, specified as a 3-digit octal

number.

@LVM Manual.Book Page 53 Tuesday, April 21, 1998 1:50 PM

54 Chapter 6—Language Syntax

Examples of string constants follow:

“This is a nice string.”

“This string\nwill come out on two lines.”

“This is followed by a line feed\012”

“Stuff\tseparated\tby\ttabs.”

This version of the LVM does not support any string variables, string
operations, or string assignments. Strings are used only in the $display
system function described in “The $display System Task” on page 56.

Identifiers

An identifier is a sequence of letters, digits, dollar sign, and underscore
characters used to give a name to a variable, object or program construct.
The first character must not be a $ or a digit. Identifiers are case-sensitive;
that is, uppercase and lowercase letters are considered to be different. The
LVM implementation does not limit the length of identifiers.

Escaped Identifiers

Escaped identifiers are used to specify identifiers that contain any printable
ASCII character. This mechanism is provided primarily to assist in
translating to and from other hardware description languages that may have
different naming standards.

An escaped identifier starts with a backslash character and terminates with
any white space. Neither the backslash nor the white space are considered
to be part of the identifier.

@LVM Manual.Book Page 54 Tuesday, April 21, 1998 1:50 PM

System Tasks and Functions 55

Here are some examples of escaped identifiers:

1

\CLK/

\B[12]

\begin

The last example illustrates that a Verilog keyword can be escaped so that it
can be used without being recognized as having any special language
significance.

IMPORTANT: An escaped identifier must always be followed by white space; otherwise
all following characters will be considered part of the identifier.

Keywords

A keyword is a predefined identifier that is part of the Verilog language. All
keywords are defined in lowercase letters and must be used in lowercase
only. Appendix B lists all the keywords defined in the Verilog language.

System Tasks and Functions

Several built-in system tasks and functions are invoked by name using the
$identifier construct; for example,

$display("We just got a rising clock edge.");

The available functions are fully described in the following sections.

NOTE: The full Verilog language also allows user-defined tasks of the form
$identifier, but this is not implemented in the LVM.

@LVM Manual.Book Page 55 Tuesday, April 21, 1998 1:50 PM

56 Chapter 6—Language Syntax

The $display System Task

The $display system task is used for displaying textual data as the model
executes. You can use it for debugging or to display simulation results that
are best displayed in a text format.

The $display call is followed by any number of arguments to be
displayed. If no formatting information is provided, all arguments are
assumed to be strings and are transmitted verbatim to the text output
window.

Formatting information is provided by inserting the character “%” in an
argument string followed by a letter indicating the format type. For every
“%” format specification in the string, a following argument is removed
from the list and displayed in that format. The following table summarizes
the available formats (you can also specify the format with an uppercase
letter).

Here are some examples that illustrate the use of $display:

$display("Mem element %d contains %h",

mem_addr, mem[mem_addr]);

$display("%d%% completed",

(count * 100) / max_count);

The $time System Function

The $time function returns the current system simulation time as a 32-bit
integer; for example,

$display("Got an event at time %d", $time);

Format String Conversion
%h Hexadecimal
%d Decimal
%o Octal
%b Binary
%% Display a “%” sign

@LVM Manual.Book Page 56 Tuesday, April 21, 1998 1:50 PM

Text Macros 57

The $finish System Task

The $finish command terminates operation of the Verilog model that
executes it. It affects only the current model, not any other Verilog models
or the overall LogicWorks simulation. From the LogicWorks simulator’s
point of view, this model will not generate any further output changes or
respond to input changes.

Compiler Directives

The ` mark, referred to as a back-quote, or scribe mark, introduces a
compiler directive or text macro. In the LVM implementation, the only
compiler directive is `define, which is described in the next section.

Text Macros

Verilog allows the definition of named text macros to replace commonly
used constants or text strings with a meaningful name.

Text macros are defined using the `define compiler directive; for
example,

`define T_CLK_TO_D23 // Define data out delay

`define op_ANDI'h86 // Define ANDI instruction

Note that the trailing comments are not considered to be part of the macro
text.

Macros are invoked by using the same back-quote character followed by
the macro name, as in these examples.

#`T_CLK_TO_D;

if (opcode == `op_ANDI) ->do_ANDI;

@LVM Manual.Book Page 57 Tuesday, April 21, 1998 1:50 PM

58 Chapter 6—Language Syntax

Here are some points to remember regarding text macro usage:

■ Text macro names may not be the same as those of compiler directives.

■ Text macro names may be the same as a Verilog keyword or variable
name without confusion.

■ Text macro definitions end at the end of the definition line. In other
words, they cannot be more than one line.

■ Text macros cannot contain partial language objects like strings or
identifiers. For example, the following is illegal:

`define HEX_16 16'h// Can't have part of a number...

a = `HEX_16 af;// ... in a macro

@LVM Manual.Book Page 58 Tuesday, April 21, 1998 1:50 PM

59

7
Data Types

This chapter introduces the various types of data that you can use to create
your Verilog model. In many cases, the data types are similar to those
found in a typical programming language, although some types have
characteristics intended specifically to mimic the operation of digital
circuits.

Register Data Type

The register data type represents a hardware storage device and is the most
commonly used data type for Verilog behavioral modeling. Each register
can be a single bit or an array of 1–32 bits, and each bit can have one of
four states (0, 1, high-Z, and unknown).

The register declaration is introduced by the reg keyword, as in these
examples:

reg int_en; // Single bit

reg[7:0]regA; // 8-bit register, MSB high

reg[1:12]accum; // 12-bit register, MSB low

reg[`MSB:0]mem_dat; // Using `define for width

reg[3:0]flags1, flags2; // Two 4-bit regs

When a range is specified, the first number is the bit number of the most
significant bit. In the last example above, note that any number of registers
of the same width can be declared in a single reg statement.

IMPORTANT: When used in an expression, a register variable is treated as an unsigned

@LVM Manual.Book Page 59 Tuesday, April 21, 1998 1:50 PM

60 Chapter 7—Data Types

n-bit integer, regardless of how the value was created. For example, if the
value −2 is assigned to a 4-bit register, the resulting binary value will be
4’b1110 using twos-complement arithmetic. This will have an effective
value of 14 when used in an arithmetic expression.

When used in expressions, registers can be subscripted to extract single bits
or any subrange of the bits in the register. For example, given the
declarations above, the following assignments are valid:

int_en = regA[3];

accum[12] = regA[3];

regA[7:0] = accum[1:8];

You should also refer to the important information on bit lengths in register
operations in “Bit Lengths in Expressions” on page 70.

Memories

Memories are implemented as arrays of reg variables, as in this example,
which creates an array of 16 × 32-bit registers:

reg[31:0] regFile[0:15];

Note the following points regarding array references:

■ Only a single array element can be assigned to at once, as in

regFile[3] = 'b1101;

Assuming the existence of another similar array called regFile2, the
following is not legal:

regFile = regFile2;// NOT LEGAL

Similarly, the following is not a legal way to initialize an entire array to
zero:

regFile = 0;// NOT LEGAL

■ The OVI Verilog standard does not specify the value of an array
reference if the array index is unknown or out of bounds. In the LVM,
such a reference is considered to have an unknown (X) value.

@LVM Manual.Book Page 60 Tuesday, April 21, 1998 1:50 PM

Ports 61

■ Because the syntax for selecting a bit out of a multibit register and an
element out of an array is identical, it is not possible to select a single
bit or a range of bits from an array element. If mem1 is declared as an
array, then mem1[n] will always refer to the entire contents of the nth
element in the array.

Ports

Port variables are used to transfer data into or out of a module. In the LVM,
ports are implemented only as single bits and can be of type input, output,
or inout.

See “Port Interface” on page 29 for specific rules and restrictions govern-
ing the port association with a LogicWorks symbol.

Following are examples of legal port declarations:

input clk;

input D0, D1, D2, D3;

inout HALT_;

output SIZE0, SIZE1;

Port-Register Aliasing

The LVM supports the concept of port-register aliasing, that is, creating an
output port and a reg variable with the same name. This allows you to use
the port name in the behavioral code and creates an automatic transfer of
any value changes to the output port.

See “Port-Register Aliasing” on page 31 for more information on the usage
of this feature.

@LVM Manual.Book Page 61 Tuesday, April 21, 1998 1:50 PM

62 Chapter 7—Data Types

Named Events

Events are used to synchronize parallel processes that may be executing
within a module and to communicate between the various hardware units
represented. This section describes the declaration and basic usage of
named events.

A more complete description of named events and value change events is
given in “Events” on page 90.

Events are declared as in these examples:

event do_fetch, end_fetch;

event TRIG1;

As with other types of declarations, you can declare multiple events after a
single event keyword. Events have no value or storage associated with
them and therefore no size specification. They are activated at an instant
and then revert to their inactive state. At the instant of activation, any
processes that are blocked and waiting for that particular event will be
placed on a list to be executed as soon as the current process blocks.

A behavioral model can wait for a named event by executing a statement
like this one:

@do_fetch;

Upon executing this statement, the procedure will block, or wait, until
some other procedure activates the named event. Events are activated by
the following type of statement:

->do_fetch;

Note that this event activation does not cause the activating procedure to
block. That is, any procedures that are waiting on this event will only start
to execute when some subsequent statement causes the activating
procedure to block.

@LVM Manual.Book Page 62 Tuesday, April 21, 1998 1:50 PM

Time Variables 63

Integer Variables

Integer variables are used for general programming purposes in a Verilog
behavioral model, such as loop counters, array indexing, and so on.
Although a reg variable can serve the same purposes, using an integer
provides a clearer indication that this quantity does not represent hardware
storage.

In the LVM implementation, an integer is equivalent to 32-bit reg,
except that the integer is treated as a signed quantity for arithmetic
purposes (unlike a reg, which is unsigned). Like a reg, each bit can have
four states, 0, 1, X and Z. In addition, you can declare arrays of integer
variables in the same manner as for reg.

Here are two examples of integer declarations:

integer i, j, k;

integer access_count[0:15];

More information on the treatment of integer variables in expressions is
provided in “Arithmetic Operators” on page 67.

Time Variables

Time variables are used to store time values for programming and
debugging purposes. In the LVM implementation, a time variable is
identical to an integer variable except that it is treated as an unsigned
quantity in arithmetic comparisons.

Here are two examples of time declarations:

time start_time;

time exec_time_histogram[1:100];

@LVM Manual.Book Page 63 Tuesday, April 21, 1998 1:50 PM

64 Chapter 7—Data Types

Unsupported Data Types

The following types of objects are not supported in the LVM:

wire

tri0/tri1

supply0/supply1

trireg

real

parameter

The first four items are used to express a circuit design in structural form.
In LogicWorks, the same function can be achieved by creating multiple
Verilog models and wiring them together in a schematic diagram. The
real and parameter data types are used in larger system descriptions that
are beyond the scope of application of LogicWorks.

@LVM Manual.Book Page 64 Tuesday, April 21, 1998 1:50 PM

65

8
Expressions and
Assignments

This chapter explains how to compute values using the various arithmetic
and Boolean operations available in the Verilog language. Most of these
operations will be familiar to users of any standard programming language,
but it is important to note how hardware-specific issues influence their use.
In particular, the exact bit length of a value and the use of High Impedance
or Don’t Know states can have a large effect on the results.

Operands

Several different types of objects can supply the values used in computing
expressions. The following table summarizes the allowable operand types.

Description Example
Constant number 8'b1101_0000
reg, integer, time regA
reg bit select regA[3]
reg part select regA[7:4]
Array element mem[3]
Call to system function $time

@LVM Manual.Book Page 65 Tuesday, April 21, 1998 1:50 PM

66 Chapter 8—Expressions and Assignments

Operators

The arithmetic, logical, bit-slicing, concatenation, and other operators
supported in the LVM are described in the following table.

Precedence Operator Description Comments
1 {} Concatenation See next section.
1 ~ Bitwise

negation
Converts all 0 bits to 1 and 1
bits to 0; X remains X.

1 ! Logical
 negation

Converts any nonzero oper-
and to zero and zero to 1.

1 + (unary) Positive Takes precedence over + as a
binary operator.

1 − (unary) Negation Takes precedence over − as a
binary operator.

2 % Modulus Result takes the sign of the
first operand.

2 * Multiplication
2 / Division Truncates any fractional part.
3 + Addition
3 − Subtraction
4 << Logical shift

 left
Vacated bits filled with zero.

4 >> Logical shift
 right

See preceding entry.

5 < Less than Returns 1 if the relationship is
true, 0 if it is false, X if either
of the operands is unknown.

5 <= Less than or
equal to

See preceding entry.

5 > Greater than See preceding entry.
5 >= Greater than

or equal to
See preceding entry.

6 != Inequality See preceding entry.
6 !== Inequality,

including X and Z
Inverse of ===.

6 == Equality If either operator contains X or
Z, result is X.

@LVM Manual.Book Page 66 Tuesday, April 21, 1998 1:50 PM

Arithmetic Operators 67

Arithmetic Operators

The arithmetic operators +, −, *, /, and % (modulus) perform their standard
binary arithmetic operations, with the following particular properties:

■ The modulus operator % gives the remainder left after dividing the left
hand operand by the right hand operand using integer division. If either
operand is negative, the result is the remainder after dividing the absolute
value of the left hand operand by the absolute value of the right hand
operand, and then giving the result the sign of the left hand operand.

6 === Equality,
including
X and Z

Result is 1 if each bit has iden-
tical value in each operand. X
matches X and Z matches Z.
Always returns 0 or 1.

7 & Bitwise AND
7 & Reduction AND

(unary)
Computes AND of all bits in
the operand.

7 ~& Reduction
NAND (unary)

Computes AND of all bits in
the operand and then inverts
the result.

8 ^ Exclusive OR
8 ^ Reduction

Exclusive OR
(unary)

Computes XOR of all bits in
the operand.

8 ~^ ^~ Reduction
Exclusive NOR
(unary)

Computes XOR of all bits in
the operand and then inverts
the result.

9 | Bitwise OR
9 | Reduction OR

(unary)
Computes OR of all bits in the
operand.

9 ~| Reduction NOR
(unary)

Computes OR of all bits in the
operand and then inverts the
result.

10 && Logical AND Returns 1 if both operands are
nonzero, 0 otherwise.

11 || Logical OR Returns 1 if either operand is
nonzero, 0 if both are 0.

12 ? : Conditional See next section.

@LVM Manual.Book Page 67 Tuesday, April 21, 1998 1:50 PM

68 Chapter 8—Expressions and Assignments

■ The operators + and − can be used in unary form and take precedence
over the same operators in binary form.

■ With all the arithmetic operators (except unary +), if any bit of either
operand is X, the entire result will be X. In the LVM implementation,
unary + returns its operand exactly.

■ The contents of reg variables are always treated as unsigned (i.e.,
positive) quantities, regardless of what kind of constant or expression
was used to assign the value. On the other hand, integer variables are
treated as signed values.

Comparison Operators

All the comparison operators produce the value 1’b0 (false), 1’b1 (true) or
1’bx (unknown), depending on the values of the operands. The table
summarizes the specific response of each of these operators to the presence
of X bits in the operands.

Logical Operators

The operators &&, ||, and ! always return 1’b1 (true), 1’b0 (false), or 1’bx
regardless of the sizes of the operands. A 0 operand is taken as false, any
value containing 1 bits is true, and any value containing only 0 and X bits is

< > <= >= If any bit in either operand is X or Z, result is X.
== If all bits that are known in both operands are the same, then

if any bit in either operand is an X, result is X. If the known
bits are different, result is 0.

!= Inverse of ==.
=== This is called the “case equals” because it operates like the

case statement; that is, all bits of both operands must match
bit-for-bit: X matches X and Z matches Z. This operator nev-
er produces an X result.

!== Inverse of ===.

@LVM Manual.Book Page 68 Tuesday, April 21, 1998 1:50 PM

Concatenation Operator {} 69

unknown. Their operation with respect to X values is summarized in the
following table.

Bitwise versus Reduction Operators

The operators ~ (negation), & (and), | (or) and ^ (xor), and their negations,
can be used in either binary (bitwise) fashion or unary (reduction) fashion.

When used with two operands, the result is produced by performing the
specified operation on each bit of the operands and placing the result in the
corresponding bit of the result. The size of the result is equal to the size of
the largest operand.

When used with a single operand, the result is 1 bit wide and is obtained by
applying the operator successively on each bit of the operand.

Concatenation Operator {}

The concatenation operator takes two or more operands in braces,
separated by commas, as in this example:

{4'b1111, reg_Sel, accum}

If reg_sel contained 4’b0101 and accum contained 8’b00000000, the
result of this operation would be 16’b1111_0101_0000_0000. The bits of
the rightmost operand are aligned at the LSB of the result, the bits of the
next operand to the left are concatenated on the left, and so on.

IMPORTANT: In order for this operation to be unambiguous, all the operands must have
an explicit size; unsized constants are not allowed.

&& If either operand is zero, the result is false. Otherwise, if
either operand is unknown, result is X.

|| If either operand is true, the result is true. Otherwise, if
either operand is unknown, result is X.

! If the operand is unknown, result is X.

@LVM Manual.Book Page 69 Tuesday, April 21, 1998 1:50 PM

70 Chapter 8—Expressions and Assignments

The concatenation operator can also take an optional repetition factor, as in

{4{4'b1010}}

This is equivalent to 16’b1010101010101010. The repetition factor must
be a constant.

Conditional Operator ? :

The conditional operator ? : selects one of two operand values based on the
truth of a logical expression. For example,

a ? q : r

returns q if a is true (nonzero) and r if a is false (zero). If a is unknown, q
and r are compared bit by bit. If the bits in a given position are the same,
that value is returned for that bit. Otherwise X is returned for that bit.

Bit Lengths in Expressions

In order to accurately mimic the operation of a hardware system, Verilog
truncates all operations to a specific bit length. For example, the
multiplication operator can create expression values much larger than
either of its operands, but then it trims them to a specific bit length.

Here are the rules that determine the bit length of an operation:

■ Integers, time variables, and unsized constants are considered to be 32
bits long.

■ All arithmetic operators, bitwise operators, and the conditional
operator return a value that is as long as the longest operand.

■ The concatenation operator returns a result whose width is the sum of
the widths of the operands.

■ Comparison operators, reduction operators, and logical operators
return a value that is 1 bit long.

@LVM Manual.Book Page 70 Tuesday, April 21, 1998 1:50 PM

Procedural Assignments 71

■ The shift operators return a value that is the same width as the left hand
operand.

Continuous Assignments

Continuous assignments are used only at the top level of a Verilog module
(i.e., not inside an initial or always block) and are used to assign values
to output ports. They are sometimes referred to as top-level continuous
assignments, to distinguish them from procedural continuous assignments,
which we describe later.

Since vectored ports are not supported in the LVM, you can use continuous
assignments to break the individual bits of a reg variable out to the
corresponding output ports. Here are some examples of continuous
assignments:

assign D0 = d_out[0];

assign RCO = Q == 4'b1111;

As the name implies, this type of assignment is continuous and permanent;
that is, any change in the variables in the expression results in an immediate
reevaluation of expression and assignment of the new value.

NOTE: Drive-strength specifications are not supported in the LVM package.

Procedural Assignments

Procedural assignments are assignments that occur in behavioral Verilog
code, that is, inside an initial or always block. Procedural assignments
are similar to assignments in a standard programming language such as C,
in that the assignment is instantaneous and takes effect only when the flow
of control of the program reaches that point. Once the assignment is made,
the variable on the left hand side holds the new value until it is changed by
the execution of another procedural assignment. There is no automatic

@LVM Manual.Book Page 71 Tuesday, April 21, 1998 1:50 PM

72 Chapter 8—Expressions and Assignments

updating of values as with the continuous assignments described
previously.

The left hand side of an assignment must be either a scalar (i.e., nonarray)
reg, integer, or time variable, an array element of one of these types, or
a bit-select of a reg. Some examples of valid left hand sides for
assignments follow:

reg_A = 8'b0;

reg_A[0] = 0;

reg_A[3:0] = 0;

mem_array[addr] = bus_data;

exec_time[count] = $time;

Note that in the example reg_A[0] = 0; the left hand side may mean one
of two things depending on the declaration of reg_A. If the variable is a
simple reg, then the LHS refers to bit 0 of the reg. If reg_A is an array,
this refers to element 0 of the array.

NOTE: The LVM does not support the concatenation operator on the left hand
side of an assignment.

Blocking Procedural Assignments

A blocking procedural assignment is the standard type of assignment in
Verilog, as shown in these examples:

pc = oldAddr + 1; // Simple expression

mem[addr] = reg_B; // Memory assignment

cond_code[1:0] = 0; // Bit-select

out_data = #5 accum; // With delay control

bus = @transfer d_out;// With event control

The blocking procedural assignment consists of an expression on the right
hand side and a destination on the left hand side, separated by a simple
equal sign.

The term blocking refers to the fact that execution of the procedure waits,
or blocks, until the expression evaluation and assignment are complete. No
following statements in this execution path are executed until this one is

@LVM Manual.Book Page 72 Tuesday, April 21, 1998 1:50 PM

Procedural Assignments 73

complete. This aspect of the blocking procedural assignment is significant
only if some delay is specified in the assignment statement. If no delay is
specified (i.e., no “#” delay control or “@” event control), then the
assignment will be completed immediately.

However, if any delay or event control is specified (as in the last two
preceding examples), then the execution of the procedure will block until
the specified wait conditions are satisfied. Only then will execution
continue with the next statement in line.

For more information on delay and event controls, see “Time Control: De-
lays and Events” on page 87.

Nonblocking Procedural Assignments

Nonblocking procedural assignments differ from blocking procedural
assignments in the way they affect the control flow of the procedure
containing them. Here are some examples of nonblocking procedural
assignments:

dbus <= 8'bz; // Set bus to high-Z

q <= d; // Transfer data

siz[2:0] <= 3'b010;// Set at end of time step

A nonblocking assignment causes the simulator to execute the following
steps:

■ The simulator immediately evaluates the right hand side expression.

■ The expression value is placed on a list for later assignment at the end
of the time step.

■ Execution proceeds immediately with the next statement.

■ The stored value is assigned to the left hand side at the end of the time
step.

NOTE: Delay and event control is not supported in nonblocking assignments in
this version of the LVM.

@LVM Manual.Book Page 73 Tuesday, April 21, 1998 1:50 PM

74 Chapter 8—Expressions and Assignments

Procedural Continuous Assignments

Procedural continuous assignments are used within behavioral code to
place a continuous assignment on a reg variable. Procedural continuous
assignments have the following characteristics:

■ The continuous assignment overrides any other previous or future
procedural assignment to the same variable.

■ The right hand side of the assignment is evaluated at the time the
assign is executed, and only that value is used. Values are not
updated automatically as they are with top-level continuous
assignments.

■ Procedural continuous assignments can be applied and removed at will
during the execution of a module. When a continuous assignment is
removed (using the deassign command), the value of the variable
reverts to its former value, and the “forcing” effect of the assign is
removed. That is, subsequent procedural assignments will again be
allowed to affect the value of the variable.

■ When a continuous assignment is applied to a variable that already has
one in effect, the old assignment is deassigned before applying the new
one; that is, continuous assignments are not nested.

■ The assign and deassign commands on a given variable do not have
to be in the same code thread, that is, in the same initial or always
block.

Some examples of the assign and deassign commands follow:

assign q = 0;

assign en = addr[15:12] == 4'b1101;

deassign en;

In the first example, the value of q will be forced to zero, and standard
blocking or nonblocking procedural assignments to q will be ignored until
a deassign is done on q. This can be used, for example, to apply a hard
reset condition to a system, overriding all other activity.

In the second example, the value of en will be set based on the value of
addr at the time of execution. The third example is the corresponding
deassign.

@LVM Manual.Book Page 74 Tuesday, April 21, 1998 1:50 PM

75

9
Procedural Constructs

Verilog includes a variety of programming constructs that allow a system to
be defined from a behavioral point of view, rather than as a detailed logic
design. This frees the designer from having to think about gates and
flipflops while defining the higher-level operation of a system.

always and initial Blocks

A Verilog module can contain any number of procedures operating in
parallel, effectively modeling the parallel operation of subunits in a
hardware system. Each of these parallel flows of execution is called a
thread, or procedure, and can start, wait for specified conditions, repeat,
and even terminate without affecting the others.

Each initial or always statement that appears in a module starts a new
thread, and all threads start immediately at time zero as soon as the
simulation is started. Once started, each thread can independently proceed
with executing statements or wait for some specified condition, using
delay- and event-control constructs.

initial and always blocks have exactly the same construction, but differ
in behavior, as follows:

■ An initial block is executed exactly once. After all statements in the
block have completed execution, the thread is terminated and is not
executed again until the entire simulation process is reset. initial
blocks are typically used to initialize variables, perform simulated
power-up reset functions, specify initial stimulus, and so on.

@LVM Manual.Book Page 75 Tuesday, April 21, 1998 1:50 PM

76 Chapter 9—Procedural Constructs

■ An always block is executed repeatedly until simulation is terminated:
in effect it is an “infinite loop”. For this reason, it is essential that an
always block contain at least one delay- or event-controlled statement.
Without some form of delay, an always block will execute and repeat
in zero time and completely lock up the simulation process. always
blocks are typically used to express the ongoing behavior of the
system.

Execution Order of initial and always Blocks

Since the Verilog simulator is running on a standard, sequential CPU, the
“parallel” threads are obviously not executing truly concurrently. When
the simulation starts at time zero, the initial and always blocks in a
module are started in the order in which they are encountered in the source
file. Once a thread is started, it runs until it blocks (i.e., specifies some
delay or wait condition), then the next thread is started. This order is
important for initialization of variables, as in this example:

initial

clk = 0;

always

begin

 clk = !clk;

 #`t_clk;

end

initial

$display("clk = %h", clk);

This code fragment causes the following sequence of actions:

■ The first initial block will set clk to 0 at time zero, and then that
thread terminates.

■ The always block will begin executing immediately, also at simulation
time zero. The variable clk will then be inverted to 1, and then this
thread blocks, waiting for the specified delay.

■ Finally, the last initial block will be executed, still at simulation
time zero, and display the value 1 for clk. This thread then terminates.

@LVM Manual.Book Page 76 Tuesday, April 21, 1998 1:50 PM

begin/end Blocks 77

■ For as long as the simulation is run, the always block will then repeat
after each specified delay.

Note that, in effect, the starting value of clk will be 1 because it spends no
time in the 0 state, even though it was initialized that way.

Execution Flow Within a Procedure

In contrast to most computer programming languages, Verilog has the
concept of simulation time. Simulation time starts at zero when the
LogicWorks simulator is reset, then advances in response to delays
specified in the Verilog model and in the external LogicWorks design.

The simulation time at which a procedural statement is executed is
important because it affects the timing sequence of the system’s outputs
and its responses to stimulus. The following two rules summarize the
passage of time in a Verilog procedure:

■ Unless otherwise specified (i.e., using events, delays, or waits), all
behavioral statements in Verilog execute in zero simulation time.

■ A single thread executes without interruption as long as no time passes.

These rules are especially important when using an always statement (or
any of the other loop constructs described later in this chapter), since it is in
effect an infinite loop. If no delay or event control is specified anywhere in
the loop, it will execute forever without allowing any other thread to be
executed.

NOTE: The LVM allows execution of a model to be interrupted using ““““-.
(Macintosh) or eeee (Windows). More information appears under “User
Interrupt” on page 41.

begin/end Blocks

We use begin/end blocks to group statements that are controlled by the
initial, always, if, repeat, and other behavioral constructs described

@LVM Manual.Book Page 77 Tuesday, April 21, 1998 1:50 PM

78 Chapter 9—Procedural Constructs

in this chapter. Syntactically, each of these constructs consists of a
keyword followed by a single statement.

We sometimes refer to begin/end blocks as sequential blocks because the
statements contained in them are executed sequentially; that is, each
successive statement is executed only after the previous one has completed.
Consider this example:

initial b = 0;

In this case, the entire construct consists of the controlling keyword
initial followed by the simple statement b = 0;. In order to allow
multiple statements to be grouped into this initial block, you can use begin
and end to bracket the group, as follows:

initial

begin

 a = 0;

 b = 0;

 count = 100;

end

The begin, end, and everything in between constitute a single compound
statement that can be placed in any construct that calls for a statement.

NOTE: The fork/join parallel blocks are not implemented in this version of the
LVM.

Named begin/end Blocks

Sequential blocks can be named, as in the following example:

begin : bus_cycle_clock

reg phase;

phase = 0;

@cycle_clk;

phase = 1;

@cycle_clk;

end

@LVM Manual.Book Page 78 Tuesday, April 21, 1998 1:50 PM

Conditional Statements 79

In this case, the block is named bus_cycle_clock. Naming a block
allows you to use the following features:

■ The block can contain local variables, like the reg variable phase in
the previous example. The names of these variables are known only
within the block, thus reducing the chance of name conflict with other,
unrelated parts of the model. Note that all variables are “static”; that is,
their storage is permanently allocated, and they retain their values
between successive executions of the block.

■ A named block can be disabled (i.e., terminated) using the disable
command described later in this chapter.

Conditional Statements

The conditional statements are the heart of the language; we use them to
look at the model’s inputs and make decisions about how to proceed.
Although these constructs will look familiar to users of any standard
programming language, care should be taken to note the effect of unknown
and high-impedance values on their operation.

The if-else Statement

The conditional if-else statement allows selection of which statements to
execute based on the value of an expression. Here are some examples:

if (reset) assign q = 0;

else deassign q;

if (count >= `MaxCount) count = 0;

if (!_int_mask)

begin

->do_fetch;

@done_fetch;

end

@LVM Manual.Book Page 79 Tuesday, April 21, 1998 1:50 PM

80 Chapter 9—Procedural Constructs

In all cases, the statement (or begin/end block) after the if is executed if
the expression is known and nonzero. If the expression is unknown (i.e., X
or Z) or zero, the statement after the else (if any) is executed.

Any statement can be used after the if or else, including another if. In
this way you can create the following commonly used if-else-if
structure to make decisions in order of descending priority:

if (reset)

q = 0;

else if (load_en)

q = in_data;

else if (count_en)

q = q + 1;

else // do nothing

The case Statement

The case statement is used to choose one statement out of many to
execute, based on the value of a single expression. The case statement in
Verilog is somewhat more general than in many standard programming
languages because the case comparison values can themselves be arbitrary
expressions, not just constants. Here is an example of a case statement
used for address decoding:

case (addr)

0 : ->do_reset;

switch_setting :

enable_pia = `TRUE;

switch_setting+1 :

enable_uart = `TRUE;

switch_setting+2 : ;// Do nothing

8`hff :

begin

enable_pram = `TRUE;

$display("PRAM enabled");

end

default :

$display("No match at %h", addr);

endcase

@LVM Manual.Book Page 80 Tuesday, April 21, 1998 1:50 PM

Conditional Statements 81

In effect, the case statement is like an if-else-if construct that
compares the value of the expression following the keyword case with the
value of the expression preceding each “:”. As soon as a match is found,
the corresponding statement or begin/end block is executed, and no more
checking is done. If no match is found, the default item is executed. The
default group is optional, and if none is provided and no value match is
found, nothing is executed.

Take note of these important issues regarding case statements:

■ When case values are compared, an exact bit-for-bit match is required
in order for the corresponding statement to be executed; leading zeroes,
X’s and Z’s must match exactly. For this reason, case values should be
carefully specified in terms of bit length. For example, if no length is
specified in a constant such as `bx, it will generate a 32-bit X value.
This will not match an X value in, say, an 8-bit register. The problem
applies to negative numbers because of the leading 1 fill.

■ Because the case values can be arbitrarily complex expressions, several
may produce the same value. However, only the first item that matches
is executed. No checking is done for duplicate case values.

■ Not all commercial Verilog compilers support the use of arbitrary
expressions as case values. If compatibility is an issue in your
application, you may wish to check whether your other systems will
accept nonconstant case values.

Multiple Case Values in One Statement

The case statement syntax allows for multiple case value expressions
associated with one case, as in this example:

case (instr)

`ADD : acc = acc + data;

`SUB : acc = acc - data;

`BEQ, `BNE : if (condition) newAddr = data;

endcase

Using Don’t Care Case Values

Two variations on the case statement allow you to control which bits in the
comparison values are used in the matching process. You can use this, for

@LVM Manual.Book Page 81 Tuesday, April 21, 1998 1:50 PM

82 Chapter 9—Procedural Constructs

example, in an instruction decoder, where some bits of some instructions
are used for register selection and are not significant to the decoding
process.

In the casez construct, any bit which has a Z value in either expression is
ignored when performing the match. In the following example the case
values are given using the character "?", which Verilog allows in place of Z
to make it more clear that they are being used as Don’t Cares:

casez (instr)

// Load immediate with data in low 7 bits

8`b1??????? :acc = instr & 8`b1111111;

// Load from register with reg # in low 4 bits

8'b0101???? :acc = regfile[instr & 8`b1111];

endcase

An alternative form of this construct is introduced by the casex keyword.
This form operates in a similar fashion to casez, except that both Z and X
bits are ignored.

Looping Statements

The Verilog language defines four types of loop constructs that control
repeated execution of a sequence of a statement or begin/end block.

forever This is a simple construct that repeats indefinitely.
repeat A simple structure that executes its statement a fixed num-

ber of times.
while Executes its statement as long as its test expression is true

(nonzero).
for The most general loop structure, it allows for an arbitrary ini-

tialization statement, a termination test, and a loop control
statement.

@LVM Manual.Book Page 82 Tuesday, April 21, 1998 1:50 PM

Looping Statements 83

The forever Loop

The forever loop repeats indefinitely until the simulation terminates, or
until a disable is applied from inside the loop or from another thread.

NOTE: The statement or block controlled by forever must contain a disable or
some timing controls, or it will loop forever and lock up the simulator.

Here are some examples of forever loops:

forever #5 clk = !clk;

begin : wait_block

forever

@step_done

if (all_steps_done) disable wait_block;

end

In the first example, the variable clk will be inverted every 5 time units
until the simulation terminates. Note that no exit mechanism is provided,
so no following statements in this thread will ever be executed.

The second example uses a named begin/end block inside the forever.
This allows the use of a disable to terminate execution of the loop. Note
that the disable could also be applied from some other parallel thread
elsewhere in the module.

For more information on disable see “Disables” on page 85.

forever versus always

The forever and always constructs are very similar and you can often use
them to implement the same logic. Note, however, the following
distinctions between these two statement types:

■ always is used only at the top level of a module, that is, not inside any
other statement or begin/end block; forever is only used inside a
behavioral block, that is, inside an always or initial.

■ always introduces a new parallel thread; forever controls the flow of
execution within a thread.

@LVM Manual.Book Page 83 Tuesday, April 21, 1998 1:50 PM

84 Chapter 9—Procedural Constructs

The repeat Loop

The repeat loop executes its statement a fixed number of times, based on
the value of a control variable. Here are some examples of valid repeat
loops:

repeat (clk_count) #`DELAY clk = !clk;

repeat (8)

begin

bit_count = bit_count + 1;

bit_val = bit_val << 1;

accum = accum + bit_val & reg_A;

end

The while Loop

The while loop executes the given statement or begin/end block as long
as the control expression is true. If the control expression is false the first
time the while is encountered, the statement is not executed at all.

Here are some valid examples of while loops:

while (clk_en) #`T_CLK clk = !clk;

while ((i < length) && (buf[i] != 0))

begin

checksum = checksum + buf[i];

i = i + 1;

end

The for Loop

The for loop is the most general loop construct in Verilog. It can replace
any of the preceding loop structures, but due to its greater complexity, it
may not be as clear in meaning as the simpler loops. The for loop has the
following format:

for (initialization statement;

control expression;

step statement) statement

@LVM Manual.Book Page 84 Tuesday, April 21, 1998 1:50 PM

Disables 85

The initialization statement is executed once before the loop is started. The
control expression is evaluated once before each execution of the loop. If it
is true, the loop is executed once; otherwise the loop is terminated. The
step statement is executed once after each pass through the loop. The
initialization statement and step statement are each optional, although the
separating semicolons are not. The control expression is not optional and
must produce a valid logical true or false value.

Here are some examples of valid for loops:

for (i = 0; i < length; i = i + 1) c_array[i] = -1;

for (; enabled;) #5 clk = !clk;

for (t_size = 0 ; thing != 0; thing = thing >> 1)

 t_size = t_size + 1;

Disables

The disable statement is used to discontinue the execution of a named
begin/end block. You can use it to handle error conditions and
asynchronous events such as resets and retriggers.

The format of the disable statement is as follows:

disable block_name;

Here is an example that illustrates the use of a disable to terminate a
processor’s fetch/execute cycle when a reset input is received:

@LVM Manual.Book Page 85 Tuesday, April 21, 1998 1:50 PM

86 Chapter 9—Procedural Constructs

// When _RESET rises, start executing

always @(posedge _RESET)

begin : fetch_exec

// Execute forever unless terminated

forever

begin

if (instr == `ADD) a = a + data;

.

.

pc = pc + 1;

end

end

// When _RESET falls, terminate exec loop

always @(negedge _RESET)

begin

disable fetch_exec;

pc = 0;

end

Note that disable only terminates operations between the named begin
and its corresponding end. In the preceding example, disable
fetch_exec does not terminate the always loop containing the disabled
block. It terminates only the current execution of the enclosed begin/end
block. This means that the procedure immediately loops back to the top of
the always block and again waits on the _RESET event. In effect,
disable simply causes a jump to the end of the named block.

Note these additional points regarding disable:

■ The disable statement has no lasting disabling effect on the named
block. That is, once the execution of the block is terminated, it can be
executed again immediately if an enclosing loop construct causes
control to be passed into it again.

■ The disable statement causes all scheduled nonblocking assignments
in the named block to be removed from the execution list.

■ A block can disable itself. For example, a disable can be used within
a loop to discontinue the loop early when some condition arises.

■ If named blocks are nested and an outer one is disabled, all inner ones
are disabled at the same time.

@LVM Manual.Book Page 86 Tuesday, April 21, 1998 1:50 PM

87

10
Time Control: Delays
and Events

This chapter describes three constructs that are used to specify simulated
delays and synchronization of timed processes within a model.

■ A delay control, introduced by the “#” symbol, can be used to delay the
execution of any behavioral statement or assignment by an explicit
amount.

■ An event control, introduced by the “@” symbol, waits indefinitely for
some specified value change or named event to take place.

■ The wait statement provides a third type of delay construct that waits
for a specified condition or proceeds immediately if that condition
already exists.

Delays

A delay control consists of the “#” character followed by a delay value.
The delay value may be specified as a constant, a variable, or an arbitrary
expression. The execution of this thread is then blocked for the specified
number of time units before execution of the statement proceeds.

NOTE: Min/Typ/Max delays are not supported in this version of the LVM.

@LVM Manual.Book Page 87 Tuesday, April 21, 1998 1:50 PM

88 Chapter 10—Time Control: Delays and Events

Statement Delays

The following example illustrates the use of a simple constant delay:

#10 bus = 8'bzzzz_zzzz;

NOTE: Intra-assignment delays (e.g., a = #2 b) behave somewhat differently
than statement delays; they are described in “Assignment Delay Control”
on page 89. The discussion here refers to delays used in front of a
statement.

The next example uses a reg, time, or integer variable to determine the
delay:

#new_delay ->do_fetch;

The following example uses an expression to determine the delay. Note
that the expression must be enclosed in parentheses in order to allow the
parser to recognize the end of the expression and the start of the controlled
statement.

#((`T_MAX + count) / 2) Q0 = serin;

In the next example, the delay control appears by itself without an
associated statement. This will simply delay execution of the current
thread by the specified amount before proceeding with the next statement.
The delay is specified using a constant defined elsewhere in a `define
statement.

#`T_CLK_TO_D;

With the exception of nonblocking assignments, delays always start at the
time of completion of the previous statement. For example, when delays
are used to generate a stimulus sequence, each delay in effect specifies the
duration of the value set in the previous statement, as in this sequence:

a = 1;

#10 a = 0;

#1 a = 1;

#5 a = 'bz;

#10 a = 0;

@LVM Manual.Book Page 88 Tuesday, April 21, 1998 1:50 PM

Delays 89

These lines will generate the following waveform:

Assignment Delay Control

As shown in a number of the examples used elsewhere, delay control can
be included in an assignment by using the “#” operator. You can use the
delay operator in two different ways, as shown in these examples:

#5 n_gate = strobe && n_enable;

n_gate = #5 strobe && n_enable;

The first example is a standard statement-delay construct, of the kind
described earlier. The second example is referred to as an intra-assignment
delay.

Placing the delay specification in front of the entire statement, as in the first
example, indicates that no action should be taken in executing the
statement until the delay has expired. The important distinction here is that
the expression is not evaluated, and the variables it refers to are not
sampled until after the delay has expired.

Placing the delay specification after the equal sign, as in the second
example, indicates an intra-assignment delay. This means that the
expression should be evaluated immediately, then the delay applied, then
the new value assigned to the left hand side. Note that in this case the
actual assignment takes place at the same time, but the values of the
variables in the expression are used immediately, rather than after the
delay. The effect of the intra-assignment delay on the execution of the
following statement depends on whether the assignment is blocking or
nonblocking, as described in “Procedural Assignments” on page 71.

@LVM Manual.Book Page 89 Tuesday, April 21, 1998 1:50 PM

90 Chapter 10—Time Control: Delays and Events

You can use the `define facility to create more readable delay
specifications and define all module timing in one part of the source file, as
illustrated in the following example:

`define t_d_to_q 15
.
.
.
q = #`t_clk_to_q = d;

Events

An event control, introduced by “@”, allows the execution of a procedure
to be synchronized with some external condition. Events fall into two
categories:

■ Value-change events – Any change in value of a port or reg variable.

■ Named events – Events explicitly declared using the syntax outlined in
the next section.

The following sections illustrate the various types of event controls
available.

Named Events

In the first example, the execution of the thread will block until the named
event is activated by some other thread:

@do_fetch bus_active = 1;

As with delay controls, you can use an event control without an associated
statement to document more clearly that the execution flow of the
procedure is held up until the named event is activated. The following
statements have exactly the same effect as the preceding one:

@do_fetch;

bus_active = 1;

@LVM Manual.Book Page 90 Tuesday, April 21, 1998 1:50 PM

Events 91

The named event would be activated by some other procedure using a
statement of the form:

->do_fetch;

NOTE: The declaration of named events is covered in “Named Events” on
page 62.

Value-Change Events

An event control can also refer directly to a declared reg variable, as in this
example:

@cc flag = cc[2];

In this case, any value change in the variable cc will be considered as an event,
and execution will proceed. You can also give a specific direction of change
using the posedge and negedge specifiers, in the following format:

@(posedge clk) Q = D;

The variable or expression after a posedge or negedge must resolve to a
1-bit binary value.

A posedge event control responds to any value change to 1 or from 0, for
example, X to 1 or 0 to X. Similarly, the negedge specifier responds to 1
to 0, X to 0, or 1 to X.

Event OR Construct

An OR construct can be used to indicate that an occurrence of any of the
specified items will be sufficient to unblock the procedure, as illustrated in
this example:

@(sel1 or sel2) sel_out = sel_array[{sel2,sel1}];

In this case, any value change in either variable sel1 or sel2 will cause
the statement to be executed.

Any combination of different event types can appear in an OR construct:

@(posedge pclk or negedge nclk) Q = D;

@LVM Manual.Book Page 91 Tuesday, April 21, 1998 1:50 PM

92 Chapter 10—Time Control: Delays and Events

Assignment Event Control

Assignment event control is used in a similar fashion to delay control, as
described in “Assignment Delay Control” on page 89. In this case,
however, the execution of the statement is delayed until a specific event is
activated by some other behavioral code in the module. Here are some
examples of assignment event control:

q = @(posedge clk) d;

shift_data = @load d_bus;

@en_low D[7:0] = 8'bz;

The first example uses intra-assignment event control, with the same kind
of effect as intra-assignment delay control. In particular, the value of d is
sampled immediately upon execution of the statement. This value is then
placed on a queue of future assignments. When the value of variable clk
changes from 0 to 1 (i.e., a positive edge), the stored value is assigned to q.
This may happen at any point in the future, or it may never happen at all,
depending on the logic of the module. Since this is a blocking assignment,
execution does not proceed to the next statement until the event occurs.

The second example differs from the first in that it uses a named event, that
is, an event variable declared earlier in the module. The event must be
explicitly signaled by some other behavioral code using the ->load syntax
described in “Named Events” on page 90.

The third example illustrates the standard statement event control (i.e., not
intra-assignment) applied to an assignment. In this case, no action is taken
in executing this statement until the named event is activated by another
procedure.

Repeat Event Construct

A repeat construct can be used in conjunction with intra-assignment event
control to specify a wait of some number of occurrences of an event before
the assignment is performed. For example,

ready = repeat(’N_START_CLKS) @(posedge clk) 1;

Note that the repeat keyword must be followed by an expression in
parentheses that can be resolved to an integer value.

@LVM Manual.Book Page 92 Tuesday, April 21, 1998 1:50 PM

The wait Statement 93

The wait Statement

The wait statement is similar to an event control, except that if the
specified condition already exists at the entry to the wait, execution
proceeds through to the controlled statement. The wait statement does not
demand that a value change take place before it will consider an event to
have occurred.

Here is an example:

wait (!_bus_req) _bus_active = 0;

This statement will execute the assignment and proceed immediately if
_bus_req is zero. If not, it will block and wait for a zero value.

Note that although the while loop is similar in logic, it does not cause any
blocking to occur. For example, the following statements look like they
would implement the same logic as the above wait, but they are in fact
invalid:

while (_bus_req);

_bus_active = 0;

Since the while does not block, if _bus_req was 1 on entry, the while
loop would repeat infinitely and never allow any other procedure to execute
and change the value of _bus_req. This could be fixed by adding event
control to the while, as in this example:

while (_bus_req) @_bus_req;

_bus_active = 0;

With this addition, after each pass through the while, the execution of the
procedure will block until a change in the value of the variable occurs.

@LVM Manual.Book Page 93 Tuesday, April 21, 1998 1:50 PM

@LVM Manual.Book Page 94 Tuesday, April 21, 1998 1:50 PM

95

Appendix A–
Differences from OVI
Verilog

A proper subset of the OVI Verilog language is implemented in the
LogicWorks Verilog Modeler. In other words, we have not added any
features to the language that would be incompatible with an OVI standard
Verilog implementation.

The following concepts defined in the OVI Verilog Language Reference
Manual are not implemented in the LVM:

■ wire, real and string objects

■ The {} concatenation operator as a destination for an assignment

■ The fork/join behavioral construct

■ Min/Typ/Max delays

■ Module hierarchy

■ Parameters and path delays

■ Gate- and switch-level modeling

■ User-defined primitives

■ Constant expressions

■ force/release assignments

■ Tasks and functions

■ The repeat keyword in event control

■ Delay and event control on nonblocking assignments

In addition, the following limitations exist:

■ Ports are implemented as single bits only and can be of type input,
output, or inout.

■ Time values are stored as 32-bit unsigned values.

@LVM Manual.Book Page 95 Tuesday, April 21, 1998 1:50 PM

@LVM Manual.Book Page 96 Tuesday, April 21, 1998 1:50 PM

97

Appendix B–
Verilog Keywords

The following table lists the reserved keywords in the Verilog language.
These reserved words should not be used as variable identifiers in Verilog
models. Items marked with an asterisk are not supported in this version of
the LogicWorks Verilog Modeler.

always and* assign

begin buf* bufif0*

bufif1* case casex

casez cmos* deassign

default defparam* disable

edge else end

endcase endfunction* endmodule

endprimitive* endspecify* endtable*

endtask* event for

force* forever fork*

function* highz0* highz1*

if initial inout

input integer join*

large* macromodule* medium*

module nand* negedge

nmos* nor* not*

notif0* notif1* or*

output parameter* pmos*

posedge primitive* pull0*

pull1* pulldown* pullup*

real* rcmos* reg

release* repeat rnmos*

rpmos* rtran* rtranif0*

rtranif1* scalered* small*

specify* specparam* strong0*

@LVM Manual.Book Page 97 Tuesday, April 21, 1998 1:50 PM

98

strong1* supply0* supply1*

table* task* time

tran* tranif0* tranif1*

tri* tri0* tri1*

triand* trior* trireg*

vectored* wait wand*

weak0* weak1* while

wire* wor* xnor*

xor* $display $fclose*

$fdisplay* $finish $fmonitor*

$fopen* $fstrobe* $fwrite*

$monitor* $random* $stime*

$stop $strobe* $time

$write* $setup* $hold*

$period* $width* $skew*

$recovery* $setuphold*

@LVM Manual.Book Page 98 Tuesday, April 21, 1998 1:50 PM

Symbols
, 66
!, 66, 69
!=, 66, 68
!==, 66, 68
$display statement, 39, 54, 55,

76
redirecting output, 37

$finish, 57
$time, 56, 72
%, 66, 67
% formatting in $display, 56
&, 67, 69
&&, 67, 69
*, 66, 67
+, 66, 67
+ (unary), 66
-, 66, 67
- (unary), 66
-> event activation, 62, 79, 88,

91, 92
/, 66, 67
<, 66, 68
<<, 66
<=, 68
==, 66, 68
===, 67, 68
>, 66, 68
>=, 66, 68
>>, 66
? :, 67, 70
? high-impedance, 53, 82
@ event control, 49, 62, 90

example, 46

in assignments, 72, 73, 92
^, 67, 69
^~, 67
`define, 57, 88, 90
{}, 66, 69, 95
|, 67, 69
||, 67, 69
~, 66, 69
~&, 67
~^, 67
~|, 67

A
always statement, 48, 71, 75, 86

vs. forever, 83
arrays, 60, 63, 65, 72

in Show Variables display,
14

assign statement, 15, 48, 71, 74,
79

ports, 31
assignments, 71

blocking, 72
continuous, 31, 48, 71
delay control, 89, 95
event control, 92, 95
nonblocking, 73, 86
ports, 31
procedural continuous, 74

attribute, 15, 27, 29, 45

B
base

in $display, 56

in constants, 52
in Show Variables display,

14
begin/end, 52, 77

example, 48
named, 40, 78, 83, 85, 86

bit length, 52, 69, 70
bit-select, 65, 72
blocking, 39, 76

@events, 49, 62, 90
assignments, 72, 92
delays
nonblocking assignments,

73
wait statement, 93

C
case statement, 68, 80

Don’t Care values, 81
high-impedance values, 81
multiple case values, 81

case-sensitivity, 54
casex statement, 53, 81
casez statement, 53, 81
Clear Simulation command, 38,

41, 42, 77
clipboard, 36
Clipboard to Source command,

36
comments, 51
Compile command, 24, 36
Compile Messages command,

37
compiler directives, 57

Index

@LVM Manual.Book Page 99 Tuesday, April 21, 1998 1:50 PM

100

compiling, 36, 38
concatenation, 69, 95
conditional statements, 79
constants, 52, 65

constant expressions, 95
high-impedance, 53, 81
in case, 80
in delay
size, 69, 70, 81
string, 53
unknown, 53
using text macros, 57

continuous assignment, 31, 48,
71, 74

Copy Variables command, 41

D
debugging, 39, 56, 63
declarations, 47
delays, 77, 87

assignments, 89
intra-assignment, 89

DevEditor, 19, 28
disable statement, 85

named block, 79
double-click, 14, 18, 27, 29, 40

E
endmodule, 49
Enter key, 16, 37
escaped identifiers, 54
events, 77, 90

activation, 62, 91, 92
assignment control, 92
declaration, 62
event control with @, 62
intra-assignment, 92
named, 62, 90
OR construct, 91
repeat, 92
value change, 91

expressions, 65
bit length, 70

F
for statement, 84
force/release statement, 95
forever statement, 83

vs. always, 83
functions, 95

G
gate- and switch-level modeling,

95
Generate Templace then Edit

command, 20
Generate Template then Edit

command, 34

H
high-impedance, 53, 59, 81

constants, 53
in case, 81
in casez, 82
in equality operators, 66
in if-else, 79
in posedge or negedge, 91

I
identifiers, 54
if-then-else, 79
infinite loop, 48, 76, 77, 83, 93

interrupting, 41
initial statement, 48, 71, 75
initialization, 38, 75
installation, 7, 10
integer variables, 63, 65

assignment, 72
in Show Variables display,

40
sign treatment, 68
size, 70

interrupt, 41
intra-assignment delays, 89
intra-assignment event control,

92

K
keywords, 55, 97

L
Load Source from File com-

mand, 35
local variables, 79
loop statements, 82

M
macros, 57
memories, 60, 72

in Show Variables display,
14

message output, 37
Messages command, 37
Min/Typ/Max delays, 95
module statement, 45, 47

N
negedge, 91
New Source command, 20, 34
nonblocking assignments, 73,

86, 95
numbers

$display format, 56
base, 52
high-impedance, 53
unknown, 53

O
Open Source to Text Window

command, 33, 34
Open Verilog International, 43
operators, 66
Options menu, 16
OVI Verilog, 60, 95

P
parameters, 95
part select, 65
path delays, 95
physical hierarchy mode, 27

@LVM Manual.Book Page 100 Tuesday, April 21, 1998 1:50 PM

101

pin type, 19
setting in DevEditor, 23

ports, 15, 29, 61
declaration, 47, 61
example, 45, 47
in Show Variables display,

40
input, 47
name limitations, 30
output, 31, 47
port type, 30
port-register aliasing, 31,

47, 61
restrictions, 95
vectored, 15, 30, 32

posedge, 91
example, 46

Preferences command, 11, 35
primitive type, 19, 28
procedural assignments, 71
procedure

definition, 75

R
radix

in $display, 56
in constants, 52
in Show Variables display,

14
real variables, 95
reg variables, 59, 63, 65

arrays, 60
assignment, 72
continuous assignment, 48,

71, 74
declaration, 47, 59
example, 46
in delay
port-register aliasing, 61
sign treatment, 59, 68
value change event, 90, 91

repeat event construct, 92
repeat statement, 84

Reset control, 38, 41, 77

S
Save and Compile option, 15
Save Source to File command,

35
Select All Variables command,

41
Show Variables control, 14, 40,

41
Single Step command, 39
source code, 36, 45

length limit, 28
location, 27

Source to Clipboard command,
36

Status of Source/File command,
35

strings
constants, 53
in $display, 56

symbols
creating, 28
port interface, 29
setting primitive type, 29

T
tasks, 95
text editor, 9

$display output, 39
external, 35
message output, 37
Open Source to Text Win-

dow command, 33
Save Source to File then

Edit command, 34
text macros, 57
threads, 39, 75, 83

blocking, 87, 90
definition, 75
delay, 88
execution flow, 76, 77
Reset action, 42

time values, 56, 95
time variables, 63, 65

assignment, 72
in Show Variables display,

40
size, 70

U
unknown, 59, 81

constants, 53
in case, 81
in casex, 82
in equality operators, 66
in if-else, 79
in posedge or negedge, 91

user interrrupt, 41
user interrupt, 41
user-defined primitives, 95

V
variables

assignment, 71
declaration, 47, 59
initial state, 38
size, 70
time, 63

Verilog
differences from OVI

Verilog, 95
keywords, 97
language support, 43

Verilog.Src attribute field, 15,
27, 33, 34, 35, 36, 45

W
wait statement, 77, 93
while statement, 84, 93
wire variables, 95

X
XEditor, 9, 15, 33

@LVM Manual.Book Page 101 Tuesday, April 21, 1998 1:50 PM

@LVM Manual.Book Page 102 Tuesday, April 21, 1998 1:50 PM

103

Addison-Wesley
Technical Support

To the Student

Addison-Wesley provides help for students with installation issues, or if
you feel you have received a defective product. We do not provide
assistance with “how to” questions. Please consult with your instructor if
you have a question on how to use the software, or if it appears a particular
command or function does not give the expected results.

To the Instructor

We will be happy to provide assistance to adopters of LogicWorks Verilog
Modeler with any issue that may arise. Please understand that on some
occasions we may need to consult with the software developer for answers
to specific problems, but we will make every attempt to obtain a fast
answer for you.

Before you call Tech Support

■ Make sure that the appropriate version of LogicWorks 3 is installed as
specified in the Verilog Modeler README file.

■ Please take time to consult the LogicWorks Verilog Modeler manual

@LVM Manual.Book Page 103 Tuesday, April 21, 1998 1:50 PM

104

and any release notes that came with the software. These items might
answer your questions.

■ Please document the problem if you are receiving error messages.
When do they occur? What is the exact message? Can you recreate it?

■ Check that your computer hardware setup meets or exceeds the
minimum system requirements printed on the back cover of this book.
Please take a moment to compare your hardware against the system
requirements. Are your hardware and peripherals set up correctly and
are all cables attached securely?

■ Verify that your disk drive can read the disk correctly. A quick way for
Windows users to check this is to view the directory of the disk. Do
you see files?

■ Be prepared to state the specifics of your computer hardware setup and
the release of LogicWorks Verilog Modeler that you are using so we
can answer your questions efficiently.

Reaching Addison-Wesley Tech Support

Voice: (617) 944-2630 Monday–Friday, 9:00 AM to 4:30, EST

Fax: (617) 944-9338 anytime

Email: techsprt@aw.com anytime

For news on related products and software updates, connect to the
LogicWorks Verilog Modeler Home Page at the Addison-Wesley Computer
Science & Engineering Web site:

http://www.aw.com/cseng/authors/capilano/lwvm/lwvm.html

@LVM Manual.Book Page 104 Tuesday, April 21, 1998 1:50 PM

