Today: Sequential Logic and Verilog

I Latches and Flip-flops
I Review of latches
I Verilog and sequential logic
I Shift Register Example in Verilog (which works in DW)
I Sample code which WORKS
I More Advanced Verilog Features
1 $display() and $time() statements

Cascaded inverters

A DC E DC ks

I IF Ais"1", then B is "0", which forces A again to "1", which forces B
again to "0", and so on. Thus, the ouput Y is "1", and stays "1" forever.
This is a steady state (contrast this to the oscillator you did in your
assignment).

I Similarly, IF A is "0", then Y will stay at "0" forever.
I Wow, this looks like a bit of memory (if you ignore the magical IF...)

1 But, wait a second... How can this circuit store a value forever, it doesn't
seem to be using any power: after all we are not applying any inputs...

I This is a common fallacy! Remember, we don't draw the power supplies,
but they are ASSUMED to be there.

Cascaded inverters (cont’d)

A DC E DC ks

In describing this circuit, we used the magical IF. But what happens if you build
this in the lab? Which state will it go in? Will it go into one of the two states
described before (Y = "0", or Y = "1")? Or is there a possibility that A and B will
Jjust remain undefined (maybe both will stay at 2.5 Volts...)

Well, in theory this circuit has an undefined behavior. But if you build it, it WILL
go into one of the two states. Why?
I Say the circuit lands in an undefined state, maybe A=2.5 Volts, and B = 2.5
Volts.
I The only way you'll stay in this state is if you are in perfect equilibrium.
1 But then, any perturbation in A or B (caused maybe by electromagnetic
radiation from the moon...) will cause your circuit to spiral towards one of the
two states.

What's worse is that we don't know what state it will go in! That's not good... We
need a way to guarantee that we land in the state we WANT.

Cascaded inverters with “Set”

T“DDDEY

-

I Think of the switch as a push button, with the default state as shown.

When you activate the button, it connects a "1 to the input of the first
inverter. When you release the button, it bounces back to the default
state.

When you push the button, the loop is broken. The effect is that it sets
Y to "1". When we release the button, the value of "1" at the output
remains there.

We'll call this a "Set" (we're setting the output..). This is good, but this
means we can only store a "1". What about a "0"?

Cascaded inverters with “Set” and “Reset”

}_ AN

I Add a "Reset” switch, which makes the output Y go to 0. Again, when the
switch is released, Y stays at O.

I What happens if none of the switches are pressed? Well, the value of Y
that was there before will stay there. This is called a "Hold".

I So, we have a one bit of memory that we can set, reset, or just leave as
is.
I Now, pushing switches is not a scalable solution. We need to control our
memory cellwith =~ " = .
S
’7.»—%7 *

Cascaded inverters with “Set” and “Reset”

sei g.[m
5o
F_f—Da L’_Dc -

l_]

I Now, take a look at the black boxes above. Each has two inputs. When the
first input is 1, the output should go to O, whereas when the first input is
0, then the output should be the negation of the second input. What is
that?

Cascaded inverters with “Set” and “Reset”

Sei REI,S“'
1 l L]
(RN R

-

I The black boxes are NOR! So we can redraw the circuit with NORs
instead of the black boxes:

B 0
’QD.Q:}T Rearranging 5
—> o

and renaming

Cross-coupled NOR aates
E
q

3

1 This is called an RS latch. We can build a table that shows how this
circuit behaves:

S R |o
0 0 hold
0 1 0
1 0 1
1 1 ?27?

I What happens in the 1, 1 state? At first, both ¥ and Y’ will be O (that's
already a problem, since that means we can't call them Y and ¥'...). But,
then, if you "release” the S and R inputs (thus, setting S=0, and R=0), ¥
and Y' will oscillate. Forever!

1 So..We DISALLOW this state.

RS Latch
I R-S latch always samples its inputs. ®

I That means that a glitch in the inputs is fatal
(called the 1's catching problem). Wouldn't it be
great if the latch didn't always sample its inputs?
That way, we wouldn't be required to build hazard
free circuits (which lessens not only the design
time, but also the hardware).

=)

o=

I First attempt at solving this: use an enable signal. Note inverted inputs
1 When latch is enabled, Set and Reset work.
I When latch is disabled, hold.

Bubble introduction and
propagation

Incorrect Flip-flop in Verilog

I Use always block's sensitivity list to wait for clock to change

module dff (CLK, d, q);
input CLK, d;

output q; Not correct! Q will
change whenever the

reg a; clock changes, not
just on the edge.
always @ (CLK)
q=d;

endmodule

Correct Flip-flop in Verilog

I Use always block's sensitivity list AND the posedge keyword to wait for
clock edge

module dff (CLK, d, q);

input CLK, d;
output qg;
reg ai

always @ (posedge CLK)
q=d;

endmodule

More Flip-flops

I Synchronous/asynchronous reset/set
I single thread that waits for the clock
I three parallel threads - only one of which waits for the clock

Synchronous

module dff (CLK, s, r, 4, q);
input CLK, s, ¥, d;
output q;
reg qi

always @ (posedge CLK)

Asynchronous

module dff (CLK, s, r, d, q);
input CLK, s, r, d;
output q;
reg q;

always @ (posedge r)

if (r) g = 1'b0; g = 1'b0;
else if (s) g = 1'bl; always @(posedge s)
else q = d; g = 1'bl;
always @ (posedge CLK)
endmodule q = d;

endmodule

Sample Shift Register

module ShiftReg(Clk, ShiftIn, // State Definitions
Do, D1, D2, D3, ‘define Hold 2'b00
s0, s1, ‘define Load 2'b01
00, 01, 02, 03); ‘define ShiftRight 2'bl0
‘define ShiftLeft 2'bl1l
input Clk;
input ShiftIn; /* clock driven "state" transitions */
input DO; always @(posedge Clk) begin
input D1; out = nextout;
input D2; sdisplay ("Input is %b, Sel is %d, Output is %b",
input D3; indata, sel, out);
input S0; end
input S1;
output QO0; /* combinational logic to determine next output */
output Q1; always @(out or sel or indata) begin
output Q2; case (sel)
output Q3; ‘Hold: nextout = out;
‘Load: nextout = indata;
reg Q0, Ql, Q2, Q3; ‘ShiftRight: nextout = {1'b0, out[3:1]};
‘ShiftLeft: nextout = {out[2:0], 1'b0};
reg[3:0] indata; endcase
reg[3:0] out; end
reg[3:0] nextout;
reg[1:0] sel; assign Q3 = out([3];
assign Q2 = out[2];
assign indata = {D3,D2,D1,D0}; ass%gn Q1 = outl[1];
assign sel = {S1,S50}; assign Q0 = out[0];
endmodule

$display and $time statements

Documentation in the online manual (p. 56)
Doesn't synthesize to anything!

Formats similar to printf() in C
1 %h Hex, %d Decimal, %o Octal, %b Binary, %% Display a “%” sign
Examples of $display()
1 $display(”output %d is %h", i, vec[il);
1 $display("%d%% completed”, (count * 100) / max_count);
The $time function returns system simulation time as a 32-bit integer
1 S$display("Got an event at time %d", $time);

