Today

- K-maps
- Reverse Engineering Example
- Max block example

Thursday, May 11, 2000

1

CSE-370 Section

Karnaugh Maps

- What was the idea in doing simplication? Well, one of the ideas was to try to apply the unification theorem (AB + AB' = A).
- What we're looking for then are terms that differ only in one variable.
- This can be difficult to do when there are many terms and many variables. K-maps are just a graphical method that makes it easier.

Thursday, May 11, 2000

2

Cube Representation.

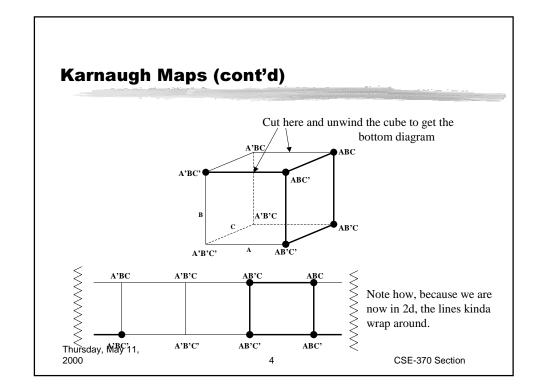
- Draw a cube: each vertex is a possible term, AND two adjacent vertices only differ in one variable.
- Now, draw a dot for each term from our boolean expression, and group dots that are connected.
- An edge that connects two dots means that we can apply the unification theorem to merge those two terms. The variable that differs is dropped.
- By applying the unification theorem twice, we can merge 4 vertices that are fully connected.

A'BC'
ABC'
ABC'
ABC'
AB'C'
AB'C'

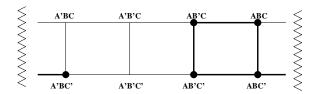
The above cube shows the expression A'BC + ABC' + ABC + AB'C + AB'C'. It simplifies to: A + BC'

Thursday, May 11, 2000

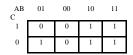
3



Karnaugh Maps (cont'd)



A simpler drawing of this is given below. We call this kind of table a Karnaugh map.



Thursday, May 11,

5

CSE-370 Section

Implicants

- Implicant: A product term whose "oneness" implies the functions "oneness".
- Prime Implicant: Implicant that cannot be combined with another implicant.
- Essential Prime Implicant: Implicant that covers an element of the on-set which is not covered by any other implicant.

Thursday, May 11, 2000

6

Example of Implicants

- **■** Implicants
- Six Prime Implicants: A'B'D, BC', AC, A'C'D, AB, B'CD

■ Essential PI: AC,BC'

■ F=A'B'D+BC'+AC

AB CD	00	01	11	10
00	0	1	1	0
01	1	1	1	0
11	1	0	1	1
10	0	0	1	1

Thursday, May 11, 2000

7

CSE-370 Section

K-map: SoP and PoS

■ SoP:

A'BC'D'+A'B'C'D+ABC'D+AB'C'D+A'B'CD+AB'CD

■ Minimized Exp

A'BC'D'+B'D+AC'D

■ PoS:

(A+B+C+D)(A'+B'+C+D)(A'+B+C+D)(A+B'+C+D')

Minimized PoS

(B+D)(A'+D)(B'+C')(A+B'+D')

Thursday, May 11, 2000

8

CSE-370 Section

0

1

10

0

1

AB **00**

1

CD

00

01

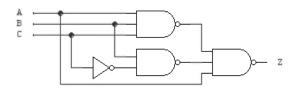
11

10

01 11

Reverse Engineering Example

■ Write down the Boolean expression:



$$f(A, B, C) = \overline{ABC} \bullet \overline{BC} \bullet A$$

Thursday, May 11, 2000

9

CSE-370 Section

Reverse Engineering Ex (cont.)

■ Write the complete truth table for the circuit.

A	В	С	Z
0	0	0	1
	0	1	1
	1	Ō	i
	1	1	1
1	0	0	0
	0	1	0
	1	0	1
	1	1	1

Thursday, May 11, 2000

10

Reverse Engineering Ex (cont.)

■ Do a k-map:

Thursday, May 11, 2000

11

CSE-370 Section

Reverse Engineering Ex (cont.)

■ Re-implement the better design.

Thursday, May 11, 2000

12

Max function

- The max block has 4 inputs (X1, X0, Y1, Y0), and 2 outputs (M1, M0)
- X1, X0 is a 2 bit 2's complement number, and so is Y1, Y0
- M1, M0 is the maximum between the two input numbers

Thursday, May 11, 2000

13

CSE-370 Section

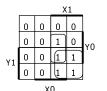
Truth Table

X1	X0	Y1	Y0	M1	M0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	0	0
0	0	1	. 1	0	0
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

Thursday, May 11, 2000

14

K-map



$$\mathbf{M}_{1} = \mathbf{X}_{1} \mathbf{Y}_{1} + \mathbf{X}_{1} \mathbf{X}_{0} \mathbf{Y}_{0}$$

$$M_0 = Y_1'Y_0 + X_1'X_0 + X_1Y_0 + X_0Y_1$$

Thursday, May 11, 2000

15