CSE 370, Autumn 2000

Homework 2 Solutions

1.  Draw a schematic in Design Works for the following function: f(A,B,C,D)=(AB'+C'D)'


2.  Prove using truth-table method:

A B A + B' (A + B') B AB
0 0 1 0 0
0 1 0 0 0
1 0 1 0 0
1 1 1 1 1
Result: (A + B')  B = AB
A B C AC A'B A + B A' + C AC + A'B (A + B) (A' +C)
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0
0 1 0 0 1 1 1 1 1
0 1 1 0 1 1 1 1 1
1 0 0 0 0 1 0 0 0
1 0 1 1 0 1 1 1 1
1 1 0 0 0 1 0 0 0
1 1 1 1 0 1 1 1 1
    Result: (A+B)(A'+C)= AC + A'B

3.  Prove the following using other theorems and laws (listing the number of the law at each step). 

(a)  (A + B).(A +C) = A + BC

      (A + B).(A +C) = (A + B).(A)+ (A + B).(C) (Distributive law)

                                = (A.A + B.A) + (A.C +B.C) (Distributive law)

                                = A.A + B.A +A.C + B.C     (Associative law)

                                = A + B.A + A.C + B.C        (Idempotent Theorem)

                                = A + A.B + A.C + B.C       (Commutative law)

                                = A + B.C            (Simplification Theorem X + X.Y = X) X)                                                                                              

(b)  AB + A'C = (A + C).(A' + B) 

      (A + C).(A' + B) = (A + C).(A') + (A + C).B    (Distributive law)

                                 = (A.A' + C.A') + (A.B + C.B) (Distributive law)

                                 = A.A' + C.A' + A.B + CB  (Associative law)

                                 =   C.A' + AB + CB (Theorem of complementarity A.A' = 0)

                                 = A'C + AB + CB (Commutative law)

                                 = A'C + AB  (Consensus Theorem)

             


4.  Use DeMorgan's theorem to invert the following expressions:


5.  Demonstrate that a 2-input NOR gate is a universal logic element.  Is an XOR gate universal?  Why? What about NAND ?

 

We show that we can implement NOT, AND and OR gates using NOR gates only to show that NOR is a universal logic element. We show that using a design works schematic below : 

 

 

 

 

 

We show that NAND gates can create all other logic functions, and in particular  AND, OR and NOT gates. 

To implement a NOT gate using NAND : (A NAND A) =  NOT A = A'

 A NAND gate with its output inverted gives us an AND gate.

NAND -> OR

X Y X' Y' (X' Y')' X + Y
0 0 1 1 0 0
0 1 1 0 1 1
1 0 0 1 1 1
1 1 0 0 1 1
X' NAND Y' = X OR Y

A NAND gate with its inputs inverted creates an OR gate, and adding another inverter to the output yields a NOR gate.

 Thus, having created all other logic gates from NAND gates, we can say that NAND is a universal logic function.

An XOR gate is clearly not a universal element, because there is no way to create an AND or OR gate using only XOR gates.


6.  f(A, B, C, D) = Σm(1, 2, 3, 5, 8, 13)


7. Consider the function f(A,B,C) = AB +  B'C' + AC'

(a) Express the function in canonical sum-of-products form. Use "little m" notation.

 f(A,B,C) = ABC + ABC' + AB'C' + A'B'C' = Σm(0, 4, 6, 7)

(b) Express the complement of the function in canonical product-of-sums form. Use "big M" notation.

f'(A,B,C) = (A + B + C).(A + B' + C').(A' + B' + C).(A' + B' +C') =  ΠM(0 , 4, 6, 7)


Created by: Krishna Gummadi

10/6/00