
University of Washington – Computer Science & Engineering

Winter 2022 Instructor: Justin Hsia 2022-03-08

Name: _Perry_Perfect_______________
Student ID

Number: _1234567______

Please do not turn the page until 11:40.

Instructions

• This quiz contains 4 pages, including this cover page.

• Show scratch work for partial credit, but put your final answers in the boxes and blanks

provided.

• The quiz is closed book and closed notes.

• Please silence and put away all cell phones and other mobile or noise-making devices.

• Remove all hats, headphones, and watches.

• You have 60 (+10) minutes to complete this quiz.

Advice

• Read questions carefully before starting. Read all questions first and start where you

feel the most confident to maximize the use of your time.

• There may be partial credit for incomplete answers; please show your work.

• Relax. You are here to learn.

Question Points Score

(1) Decoders 12 12

(2) Routing Elements 11 11

(3) Cryptography 9 9

Total: 32 32

2

Question 1: Decoders [12 pts]

We are building a 7-seg decoder circuit for Simon, a color-based memory game with 4

buttons. The signals T(op), B(ottom), L(eft), and R(right) are high (1) only if a button in the

corresponding column or row is being pushed. The 2-bit bus K represents which color is

recognized (green = 00, red = 01, blue = 10, yellow = 11). The Valid signal (V) is high when at

least one button is being pressed.

(A) Complete the truth table. We give priority to T and L.

[4 pt]

(B) In the space below, solve for the minimal logical

expression for 𝐊𝟎. [4 pt]

(C) For the 7-seg signal numbering and outputs shown

above (lit/red = 1), draw the minimal logic for 𝐒𝟐 in

terms of V, K1, and K0. All signals should be off when

V = 0. [4 pt]

T B L R V K 1 K 0

0 0 0 0 0 X X

0 0 0 1 0 X X

0 0 1 0 0 X X

0 0 1 1 0 X X

0 1 0 0 0 X X

0 1 0 1 1 1 1

0 1 1 0 1 1 0

0 1 1 1 1 1 0

1 0 0 0 0 X X

1 0 0 1 1 0 1

1 0 1 0 1 0 0

1 0 1 1 1 0 0

1 1 0 0 0 X X

1 1 0 1 1 0 1

1 1 1 0 1 0 0

1 1 1 1 1 0 0

T

B

L R

Part

A

Part

C

T

B

L

R

V

K1

K0

S
7

 green red blue yellow

3

Question 2: Routing Elements [11 pts]

We are creating a sequential circuit with 1-bit inputs (enable), (action), and (direction)

and 𝑛-bit output . When not enabled, stays constant, otherwise, the circuit will either count

() or shift () each cycle. indicates to decrement when counting or right-shift when

shifting and indicates the opposites. The circuit always shifts in a bit.

(A) Draw out the circuit below. You can freely use registers, constants, 2:1 MUXes, and the

following logic blocks. Make sure you label the corresponding selector bits for ports of

routing elements. [8 pt]

(B) Now assume that we instantiate our circuit with 𝑛 = 3. In the Verilog testbench below,

fill in the blanks to indicate how the output of our sequential circuit updates. [3 pt]

initial begin

 D <= 1; A <= 0; E <= 1; // Q: 000

 @(posedge clk); A <= 1; // Q: _001_ (+ 1)

 @(posedge clk); E <= 0; // Q: _010_ (<<1)

 @(posedge clk); D <= 0; A <= 0; E <= 1; // Q: _010_ (∅)

 @(posedge clk); A <= 1; // Q: _001_ (- 1)

 @(posedge clk); A <= 0; // Q: _000_ (>>1)

 @(posedge clk); $stop(); // Q: _111_ (- 1)

end

n

n

n
n

log2ڿ 𝑛ۀ

n
n

log2ڿ 𝑛ۀ

n

4

Question 3: Cryptography [9 pts]

In cryptography, we wish to encode a message to apparent nonsense in a reversible manner so

that the intended recipient can decode it and recover the original message. We can build a

simple encoder using logic gates and a special “key”!

Example: With the message , and key , we get the encrypted message ,

from which we can recover the original message using the same key.

(A) (Circle one) Which type of gate will allow us to reversibly encrypt and decrypt? [1 pt]

AND NAND NOR OR XNOR XOR

(B) Below, implement a 4-bit encryption circuit that computes the encrypted message

from the original message and key . You may only use a single type of 2-input logic

gate. [3 pt]

(C) Assume 𝑡NOT = 10 ns, 𝑡AND = 𝑡OR = 25 ns, and 𝑡XOR = 40 ns. Now we want to implement

a decryption circuit that reverses the encryption. How much slower, if at all, would this

decryption circuit be than the encryption circuit from Part B? [2 pt]

The decryption circuit is identical to the encryption circuit! __0__ ns

(D) Outline (in writing) a possible solution to handling messages of any length (e.g., ones that

are much longer than the key), assuming that we only have one instance of the encryption

circuit (i.e., we can't spawn extra circuitry on the fly). [3 pt]

One possibility would be to use the encryption circuit along with shift registers, encrypting 𝑛-

bits at a time. You would need to shift 𝑛 bits of the message, the key, and the result every

clock cycle. The result would need to either be sent serially or written into a large enough

buffer.

