University of Washington – Computer Science & Engineering Winter 2017 Instructor: Justin Hsia 2017-03-13 CSEE 369 QUIZ 3 Name: UWNetID:

Please do not turn the page until 10:30.

Instructions

- This quiz contains 4 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 35 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question		Points	Score
(1) Counters		12	
(2) Shift Registers		11	
(3) Routing Elements		9	
	Total:	32	

Question 1: Counters [12 pts]

Implement a counter that goes through the following state sequence: $000 \rightarrow 111 \rightarrow 110 \rightarrow 101 \rightarrow 001 \rightarrow 000 \rightarrow \dots$ using a *minimal number of 2-input logic gates*.

\mathbf{PS}_2	\mathbf{PS}_1	\mathbf{PS}_0	NS_2	NS_1	NS_0
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Question 2: Shift Registers [11 pts]

We have a 4-bit linear feedback shift register (LFSR) that goes through the following state sequence: $0000 \rightarrow 0001 \rightarrow 0010 \rightarrow 0101 \rightarrow 1011 \rightarrow \cdots$

- (A) <u>Circle one</u>: This LFSR is shifting bits to the **LEFT** / **RIGHT**. [1 pt]
- (B) The bit that is shifted in is a function of two of the LFSR bits. We number the bits starting from 0 increasing from right to left (like standard binary). What is the name of the gate being used and which two bits are its inputs? [6 pt]

Gate:	
Bits:	and

(C) Complete the Verilog code below to implement this LFSR. Feel free to use"state[i] ? state[j]" to indicate the correct answer to part B. [4 pt]

<pre>module LFSR (state, shift, reset, clk); output reg [3:0] state; input shift, reset, clk;</pre>	
always @(posedge clk) begin	
if ()	
state <=	;
else if ()	
state <= end	;
endmodule	

Question 3: Routing Elements [9 pts]

Implement a circuit that computes the **factorial function** n! = n*(n-1)!. Note that it will take n clock cycles to compute n! and we will let it run infinitely (*no stop condition*).

<u>Note 1</u>: Both registers (after a Reset) start with value 0. Make sure that your circuit doesn't get stuck at the value 0. <u>Hint</u>: what's the title of this problem?

Note 2: Make sure that your n and n! bus values line up properly (other than 0! and 0).

Assume you can freely use gates and routing elements discussed in class plus the constants **0** and **1** and the following logic blocks:

