University of Washington - Computer Science \& Engineering
 Winter 2017 Instructor: Justin Hsia 2017-03-13
 CSE 369 QUIZ 3

Name:

UWNetID:

Please do not turn the page until 10:30.

Instructions

- This quiz contains 4 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 35 minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read all questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) Counters	12	
(2) Shift Registers	11	
(3) Routing Elements	9	
	Total:	$\mathbf{3 2}$

Question 1: Counters [12 pts]
Implement a counter that goes through the following state sequence: $\mathbf{0 0 0} \rightarrow \mathbf{1 1 1} \rightarrow \mathbf{1 1 0} \rightarrow$ $\mathbf{1 0 1} \rightarrow \mathbf{0 0 1} \rightarrow \mathbf{0 0 0} \rightarrow \ldots$ using a minimal number of 2-input logic gates.

$\mathbf{P S}_{\mathbf{2}}$	$\mathbf{P S}_{\mathbf{1}}$	$\mathbf{P S}_{\mathbf{0}}$	$\mathbf{N S}_{\mathbf{2}}$	$\mathbf{N S}_{\mathbf{1}}$	$\mathbf{N S}_{\mathbf{0}}$
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

	NS_{2}	00		
0	01	11	10	

Wire connection:

Wire crossing:
-

Question 2: Shift Registers [11 pts]
We have a 4-bit linear feedback shift register (LFSR) that goes through the following state sequence: $0000 \rightarrow 0001 \rightarrow 0010 \rightarrow 0101 \rightarrow 1011 \rightarrow \cdots$
(A) Circle one: This LFSR is shifting bits to the LEFT / RIGHT. [1 pt]
(B) The bit that is shifted in is a function of two of the LFSR bits. We number the bits starting from 0 increasing from right to left (like standard binary). What is the name of the gate being used and which two bits are its inputs? [6 pt]

(C) Complete the Verilog code below to implement this LFSR. Feel free to use "state[i] ? state[j]" to indicate the correct answer to part B. [4 pt]

```
module LFSR (state, shift, reset, clk);
    output reg [3:0] state;
    input shift, reset, clk;
    always @(posedge clk) begin
        if (__ )
            state <= ___;
        else if ( ___ )
            state <= ___;
    end
endmodule
```


Question 3: Routing Elements [9 pts]

Implement a circuit that computes the factorial function $\mathbf{n}!=\mathbf{n *}(\mathbf{n - 1})!$. Note that it will take n clock cycles to compute n ! and we will let it run infinitely (no stop condition).

Note 1: Both registers (after a Reset) start with value 0 . Make sure that your circuit doesn't get stuck at the value 0 . Hint: what's the title of this problem?

Note 2: Make sure that your n and n ! bus values line up properly (other than 0 ! and 0).
Assume you can freely use gates and routing elements discussed in class plus the constants $\mathbf{0}$ and 1 and the following logic blocks:

