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Instructions 
• This quiz contains 4 pages, including this cover page. 

• Show scratch work for partial credit, but put your final answers in the boxes and blanks 

provided. 

• The quiz is closed book and closed notes. 

• Please silence and put away all cell phones and other mobile or noise-making devices. 

• Remove all hats, headphones, and watches. 

• You have 60 (+10) minutes to complete this quiz. 

 

Advice 
• Read questions carefully before starting.  Read all questions first and start where you feel 

the most confident to maximize the use of your time. 

• There may be partial credit for incomplete answers; please show your work. 

• Relax.  You are here to learn. 

 

Question Points Score 
(1) Decoders 13 13 
(2) Routing Elements 10 10 
(3) Error Detection 10 10 

Total: 33 33 
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Question 1:  Decoders  [13 pts] 

We are building a binary-to-flag semaphore decoder circuit.  A flag semaphore is a textual encoding 

using the positions of two flags.  The digit semaphores are shown below on the left.  We will use the 

radial arrangement of 8 LEDs, which are lit/black when the corresponding signal Si is high/1, to 

display the flag positions (example below shows “3”).  B represents a digit encoded in binary. 

 
1 2 3 4 5 6 7 8 9 0 

 

(A)  Complete the truth table.  [4 pt] 

(B) In the space below, solve for the minimal logical 

expression for 𝐒𝟒.  [5 pt] 

 

 

 

 

 

 

 

 

 

 

 

 

(C) The Don’t Cares will be resolved to 0’s and 1’s in implementation, which can lead to confusing 

outputs. We can handle these inputs “gracefully” by either (1) changing these all to 0’s or  

(2) adding an extra “Valid” output. Name a benefit of each approach over the other.  [4 pt] 

Option 1 benefit: (examples, not exhaustive) 

• No need for hardware for extra output signal. 
• Unambiguous output because LEDs are off for unexpected inputs. 

Option 2 benefit: (examples, not exhaustive) 

• Likely (not guaranteed) simpler circuitry for Si signals because Don’t Cares can be specifically 
chosen. 

• Valid signal better/more easily communicates in/validity to user instead of having to interpret Si. 

• Allows the use of the “all off” state for other purposes (instead of stand-in for “invalid”). 

B3 B2 B1 B0 S4 S7 

0 0 0 0 0 0 

0 0 0 1 1 0 

0 0 1 0 1 0 

0 0 1 1 1 1 

0 1 0 0 1 0 

0 1 0 1 1 0 

0 1 1 0 1 0 

0 1 1 1 1 0 

1 0 0 0 0 0 

1 0 0 1 0 1 

1 0 1 0 X X 

1 0 1 1 X X 

1 1 0 0 X X 

1 1 0 1 X X 

1 1 1 0 X X 

1 1 1 1 X X 

radial LEDs 

B3B2 

B1B0 
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Question 2:  Routing Elements  [10 pts] 

We are creating a sequential circuit with 1-bit inputs A (action), D (direction), In (input) and 𝑛-bit 

output Q. The circuit will either shift (A=0, filling vacant bit with In) or rotate (A=1, filling vacant bit 

with the bit that “falls off”) each cycle. D=0 indicates to the right (toward less significant bit) and 

D=1 indicates to left (toward more significant bit). 

(A) Draw the circuit diagram below using logic gates and routing elements discussed in class.  

Assume the clock inputs are connected properly for you.  You may use multiple copies of a 

signal name (e.g., q2, q1, q0), which are assumed connected to the same net/wire.  [5 pt] 

Two possible solutions shown below: 

 

(B) In the Verilog test bench below, fill in the blanks to indicate how the state of our bidirectional 

shifter/rotator updates.  [5 pts] 

 

initial begin                             // state: q2q1q0 

   {In, D, A} <= 3'd0;                    // state:  011 

   @(posedge clk);  A  <= 1;    // state: 001 (>> in 0) 

   @(posedge clk);  D  <= 1;    // state: 100 (rot >>) 

   @(posedge clk);  In <= 1;    // state: 001 (rot <<) 

   @(posedge clk);  A  <= 0;    // state: 010 (rot <<) 

   @(posedge clk);  $stop();    // state: 101 (<< in 1) 

end 



4 
 

Question 3:  Error Detection  [10 pts] 

In computing, an even parity bit is a bit added to the end of a string of bits to ensure that the parity 

of the overall group (i.e., the string of bits plus the parity bit) is even (i.e., there are an even number 

of 1’s).  Parity bits can be used in various forms of error checking. 

Examples: For 0b111, the even parity bit would be 1 so that 0b1111 has four 1’s. 

  For 0b1010, the even parity bit would be 0 so that 0b10100 has two 1’s. 

(A) (Circle one) Which type of gate below will be the most helpful in computing parity?  [1 pt] 

AND NAND NOR OR XNOR XOR 

(B) Implement a 3-bit even parity bit generator (i.e., compute the even parity bit for a 3-bit input 

string to complete a 4-bit group). Use only the 2-input variant of your Part A choice.  [3 pt] 

 

Any valid variation 
on connections 
accepted, such as 
(b2 ⊕ b1) ⊕ b0. 

(C) Hamming double error detection generates a specific code word from data bits that allows us 

to detect errors in the transmission or storage of the code word. For 4 data bits (d3d2d1d0), we 

generate the code word by adding 4 

even parity bits (pi) for these groups: 

Complete the circuit below that creates 

the 8-bit code word. You can use 2-

input gates, constants, and any number 

of the logic block from Part B.  

Write d3, d2, d1, d0 wherever needed. [6 pts]  

 
The shown solution relies on the invariant that parity group 1 will have even parity and 

therefore only computes the parity of the remaining bits (positions 6, 4, 2) for p8.  Any valid 

computation of p8 (e.g., XOR all 7 bits, using a different parity group invariant) accepted. 

 

Bit position: 7 6 5 4 3 2 1 0 

Code word: p1 p2 d3 p4 d2 d1 d0 p8 

Parity bit 
groups: 

p1 🗸  🗸  🗸  🗸  
p2  🗸 🗸   🗸 🗸  
p4    🗸 🗸 🗸 🗸  
p8 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 

B 

B 

B 

B 

B 


