
University of Washington – Computer Science & Engineering

Spring 2019 Instructor: Justin Hsia 2019-06-04

Name: ______________________________

UWNetID: ______________________________

Please do not turn the page until 11:40.

Instructions
 This quiz contains 4 pages, including this cover page.

 Show scratch work for partial credit, but put your final answers in the boxes and blanks

provided.

 The quiz is closed book and closed notes.

 Please silence and put away all cell phones and other mobile or noise-making devices.

 Remove all hats, headphones, and watches.

 You have 40 minutes to complete this quiz.

Advice
 Read questions carefully before starting. Read all questions first and start where you

feel the most confident to maximize the use of your time.

 There may be partial credit for incomplete answers; please show your work.

 Relax. You are here to learn.

Question Points Score
(1) Flag Semaphore 10
(2) Shift Registers 13
(3) Parity Bit 9

Total: 32

2

Question 1: Flag Semaphore [10 pts]

We are building a binary-to-flag semaphore decoder circuit. A flag semaphore is a textual

encoding using the positions of two flags. The semaphores for the digits are shown below on the

left. We will use the radial arrangement of 8 LEDs, which are lit/black when the corresponding

signal S୧ is high/1, to display the flag positions (example below shows “3”). B represents a digit

encoded in binary.

1 2 3 4 5 6 7 8 9 0

(A) Complete the partial truth table below. [4 pt]

(B) In the space below, solve for the minimal logical

expression (using 2-input gates) for 𝐒𝟓. [4 pt]

(C) Briefly describe how you would theoretically (i.e. before actually running it in hardware)

check if the inputs 10-15 produce valid semaphores or not. [2 pt]

B3 B2 B1 B0 S5 S4 S2

0 0 0 0 0 0 1

0 0 0 1 1 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 1 0

0 1 0 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 0 1 0

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 X X X

1 0 1 1 X X X

1 1 0 0 X X X

1 1 0 1 X X X

1 1 1 0 X X X

1 1 1 1 X X X

radial LEDs

3

Question 2: Shift Registers [13 pts]

We are creating a 3-bit bidirectional shifter (can shift in both directions) with parallel load that

takes input bits Shift, Dir, Load, d0, d1, and d2. When shifting, we shift the current bits

either to the right (i.e. into the less significant bit) when Dir = 0 or to the left when Dir = 1

and shift in d0. When loading, the state bits become d0, d1, and d2. Shifting takes priority.

(A) Draw the circuit diagram below using logic gates and routing elements discussed in class.

Assume the clock inputs are connected properly for you. You may use multiple copies of a

signal name, which are assumed connected to the same net/wire. [8 pt]

 Make sure you label the corresponding selector bits for ports of routing elements.

(B) In the Verilog testbench below, fill in the blanks to indicate how the state of our

bidirectional shifter updates. Assume assign D = {d2, d1, d0}; [5 pt]

initial begin // q pos: 210

 Shift <= 0; Dir <= 0; Load <= 0; D <= 3'b101; // state: 010

 @(posedge clk); Shift <= 1; // state: _____

 @(posedge clk); Dir <= 1; // state: _____

 @(posedge clk); Load <= 1; // state: _____

 @(posedge clk); Shift <= 0; // state: _____

 @(posedge clk); $stop(); // state: _____
end

4

Question 3: Parity Bit [9 pts]

In computing, an even parity bit is a bit added to the end of a string of bits to ensure that the

parity of the overall group (i.e. the string of bits plus the parity bit) is even. Parity bits can be

used in various forms of error checking.

Examples: For 0b111, the even parity bit would be 1 so that 0b1111 has four 1’s.

 For 0b1010, the even parity bit would be 0 so that 0b10100 has two 1’s.

(A) (Circle one) Which type of gate below will be the most helpful in computing parity? [1 pt]

AND NAND NOR OR XNOR XOR

(B) Below, implement a 4-bit even parity bit generator (i.e. compute the parity bit for a 4-

bit input string). You may only use a single type of 2-input logic gate. [3 pt]

(C) Assume 𝑡୒୓୘ = 10 ns, 𝑡୅୒ୈ ൌ 𝑡୓ୖ ൌ 25 ns, and 𝑡ଡ଼୓ୖ ൌ 40 ns. We want to implement a

parity checker circuit that indicates whether or not there (likely) was a transmission

error. This circuit should return 0 if the parity of the group (string + parity bit) is even

and return 1 if the parity of the group is odd. How much slower, if at all, would this

checker circuit be than the parity bit generator from Part B? [3 pt]

_______ ns

(D) Describe a limitation of this type of error checking (e.g. what’s an error situation that this

parity checker wouldn’t be able to detect?). [2 pt]

