
University of Washington – Computer Science & Engineering

Spring 2017 Instructor: Justin Hsia 2017-05-30

Name: _Perry_Perfect__________________

UWNetID: _perfect_______________________

Please do not turn the page until 10:40.

Instructions
 This quiz contains 4 pages, including this cover page.

 Show scratch work for partial credit, but put your final answers in the boxes and blanks

provided.

 The quiz is closed book and closed notes.

 Please silence and put away all cell phones and other mobile or noise-making devices.

 Remove all hats, headphones, and watches.

 You have 35 minutes to complete this quiz.

Advice
 Read questions carefully before starting. Read all questions first and start where you

feel the most confident to maximize the use of your time.

 There may be partial credit for incomplete answers; please show your work.

 Relax. You are here to learn.

Question Points Score
(1) Timing Revisited 10 10
(2) Building Blocks 12 12
(3) Shift Registers 10 10

Total: 32 32

2

Question 1: Timing Revisited [10 pts]

Consider the following circuit diagram with: ݐ௦௘௧௨௣ ൌ 40 ps, ݐ௛௢௟ௗ ൌ 10 ps, ݐ஼ଶொ ൌ 60 ps,

஺஽஽ݐ ൌ 80 ps, and ݐ஼ைெ௉ ൌ 100 ps. Fill in your answers in the boxes below, including units.

(A) What is the minimum clock period that will ensure proper behavior? [2 pt]

஼ଶொݐ ൅ ஺஽஽ݐ ൅ ஼ைெ௉ݐ ൑ ௣௘௥௜௢ௗݐ െ ௦௘௧௨௣ 280 psݐ

(B) For a particular set of inputs A௜ and B௜, how long does it take to compute the associated

output Out௜? Measure from the moment A and B update to the moment Out updates.

You may use the variable ݐ௣௘௥௜௢ௗ (answer to part A) in your answer. [2 pt]

A, B update ݐ஼ଶொ after one clock trigger, Out updates ݐ஼ଶொ
after the next clock trigger

 ps 280 = ࢊ࢕࢏࢘ࢋ࢖࢚

Now we add a register between the adder and comparator:

(C) What is the new minimum clock period that will ensure proper behavior? [2 pt]

஼ଶொݐ ൅ ஼ைெ௉ݐ ൑ ௣௘௥௜௢ௗݐ െ ௦௘௧௨௣ 200 psݐ

(D) For a particular set of inputs A௜ and B௜, how long does it now take to compute the

associated output Out௜? Measure from the moment A and B update to the moment Out

updates. You may use the variable ݐ௣௘௥௜௢ௗ (answer to part C) in your answer. [2 pt]

A, B update ݐ஼ଶொ after one clock trigger, C updates ݐ஼ଶொ
after the next clock trigger, Out updates ݐ஼ଶொ after the
next clock trigger.

૛࢚400 = ࢊ࢕࢏࢘ࢋ࢖ ps

(E) Does adding this extra register help or hurt? Explain briefly. [2 pt]

Help: Faster computation rate (shorter clock period)
Hurt: Longer individual computation time

3

Question 2: Building Blocks [12 pts]

(A) Implement a 2:4 binary decoder below using only NOT, AND, and OR gates. The 2 input

bits (ݏଵ and ݏ଴) set the corresponding output bit (one of ݀଴ through ݀ଷ) high. [4 pt]

(B) Implement a 2-bit, 1-to-4 DEMUX below using only NOT, AND, and OR gates. This

passes the 2 input bits onto 1 of 4 sets of outputs (OutN_x). Assume you have a working

2:4 binary decoder and write in the signals ݀଴, ݀ଵ, ݀ଶ, and ݀ଷ where needed. [8 pt]

4

Question 3: Shift Registers [10 pts]

We have a 4-bit linear feedback shift register (LFSR) that goes through the following state

sequence: 0000 → 1000 → 1100 → 0110 → 0011 → 0001 → 1000 → ⋯

(A) Circle one: This LFSR is shifting bits to the LEFT / RIGHT. [1 pt]

(B) The bit that is shifted in is a function of two of the LFSR bits. We number the bits

starting from 0 increasing from right to left (like standard binary). What is the name of

the gate being used and which two bits are its inputs? Hint: all named gates are

associative (i.e. Fሺ0,1ሻ ൌ Fሺ1,0ሻ). [6 pt]

1st transition tells us we are shifting right and that F(0,0)

= 1. 2nd transition tells us that either F(0,1) = 1 with one

tap being bit 3 or neither tap is bit 3. 3rd transition tells

us that either NAND of bits 3 & 2 or F(0,1) = 0 with one tap being bit 2. 4th transition

eliminates NAND possibility, leaving us with either NOR of bits 2 & 1 or NOR/XNOR of

bits 2 & 0. No extra info from 5th transition. 6th transition confirms NOR of bits 2 & 1.

(C) The Verilog code below is supposed to implement a 4-bit parallel-in, serial-out (PISO)

register. The output is the highest state bit. It will shift in the lowest bit of the input bus.

Find errors in the code and rewrite the offending lines in the boxes. [3 pt]

1) reg [3:0] state;

2) state <= in;

3) state <= {state[2:0], in[0]};

Gate: NOR

Bits: __2__ and __1__

module PISO (out, in, load, shift, clk);
 output out;
 input [3:0] in;
 input load, shift, clk;
 wire [3:0] state;

 always_ff @(posedge clk) begin
 if (load)
 state = in;
 else if (shift)
 state <= {in[3], state[2:0]};
 end

 assign out = state[3];

endmodule

