
University of Washington – Computer Science & Engineering

Autumn 2016 Instructor: Justin Hsia 2016-12-12

Name: _Perry_Perfect__________________

UWNetID: _perfect_______________________

Please do not turn the page until 10:30.

Instructions
 This quiz contains 4 pages, including this cover page. You may use the backs of the

pages for scratch work.

 Please clearly indicate (box, circle) your final answer.

 The quiz is closed book and closed notes.

 Please silence and put away all cell phones and other mobile or noise-making devices.

 Remove all hats, headphones, and watches.

 You have 30 minutes to complete this quiz.

Advice
 Read questions carefully before starting. Read all questions first and start where you

feel the most confident to maximize the use of your time.

 There may be partial credit for incomplete answers; please show your work.

 Relax. You are here to learn.

Question Points Score
(1) Counters 12 12
(2) Shift Registers 9 9
(3) Routing Elements 9 9

Total: 30 30

2

Question 1: Counters [12 pts]

Implement a counter that goes through the following state sequence: ૙૙૙ → ૙૚૚ → ૚૚૚ →

૙૙૚ → ૚૙૚ → 000 → ... using a minimal number of 2-input logic gates.

Fun side note – this counter creates a star on the number wheel:

PS2 PS1 PS0 NS2 NS1 NS0

0 0 0 0 1 1

0 0 1 1 0 1

0 1 0 X X X

0 1 1 1 1 1

1 0 0 X X X

1 0 1 0 0 0

1 1 0 X X X

1 1 1 0 0 1

NS2 00 01 11 10

0 0 X X X

1 1 1 0 0

NS1 00 01 11 10

0 1 X X X

1 0 1 0 0

NS0 00 01 11 10

0 1 X X X

1 1 1 1 0

000
001

011

111

110

100

010

101

Wire connection:

Wire crossing:

NSଶ ൌ PSଶതതതതതPS଴
NSଵ ൌ PSଶതതതതതPSଵ ൅ PS଴തതതതത
NS଴ ൌ PSଶതതതതത ൅ PSଵ

Rubric:

 1 pt each column of truth table

 2 pt each K-map (filling and

simplification)

 1 pt each signal convert Boolean

expression to logic gates

3

Question 2: Shift Registers [9 pts]

We are reading serialized data from a sensor that includes a 4-bit analog-to-digital (A/D)

converter and a shift register. We sum up consecutive readings of sensor data and store the

result in an enabled 4-bit register. We only have access to 4-bit shift registers with parallel load

capability. Serial loading is done from the D0 input.

(A) Connect the circuit elements shown below to allow for the behavior described above. [3 pt]

(B) Assuming the first sensor data is available on Cycle 0, fill in the tables at the bottom for

the unspecified inputs (Shift and Load of the sensor shift register and Enable to the result

register) to produce the behavior described above. [6 pt]

Cycle Shift Load Q0 Q1 Q2 Q3 Enable

0 0 1 X X X X 0

1 1 0 I0 I1 I2 I3 0

2 1 0 X I0 I1 I2 0

3 1 0 X X I0 I1 0

4 0 1 X X X I0 0

5 1 0 I4 I5 I6 I7 0

6 1 0 X I4 I5 I6 0

7 1 0 X X I4 I5 0

8 0 1 X X X I4 0

9 1 0 I8 I9 I10 I11 1

FPGA Sensor

Shift CLK Load

4‐bit
Shift
Reg

D3
D2
D1
D0

Q3
Q2
Q1
Q0

 Shift CLK Load

4‐bit
Shift
Reg

D3
D2
D1
D0

Q3
Q2
Q1
Q0

0 1

Shift CLK Load

4‐bit
Shift
Reg

D3
D2
D1
D0

Q3
Q2
Q1
Q0

0 1

A3
A2
A1
A0

B3
B2
B1
B0

4

4‐bit Reg
D Q

Enable CLK

Fr
o
m
 A
/D

Ungraded (for your use)
Sensor Shift Reg Result Reg

Could also switch

ordering of shift

regs in FPGA

Connections Rubric:

 1 pt Sensor-FPGA

 1 pt FPGA shifters

 1 pt Adder inputs

Shift/Load Rubric:

 2 pt: load/shift cycle

pattern of 4

(half credit if 5)

 1 pt: Load is

complement of Shift

Enable Rubric:

 1 pt: 0 after first

load/shift cycle

 2 pt: 1 after second

load/shift cycle (half

credit if off-by-one)

4

Question 3: Routing Elements [9 pts]

A cache is a hardware device that stores the most recently accessed blocks of memory for a

CPU. Implement the logic to check for a cache hit in a small 4-block direct-mapped cache

below. Ignore all other normal cache functionality. As a reminder, the procedure is as follows:

 Split the requested data’s address into Tag, Index, and Offset fields (provided for you)

 The value of the Index bits (2 bits) tells you which cache line to check

 A cache hit occurs if the cache line is Valid (1 bit) and the Tag (4 bits) matches

We represent the cache line management bits below using registers. Assume you can freely use

equality logic blocks:

n

n

1

Many working alternatives

exist (which to you think

computes the fastest?):

 Two 4:1 MUXes (one for

Tagi or TagMatchi, one for

Validi) with a single AND

gate

 Decoder on Index as extra

input to 3-input AND gates

with AND gate outputs

OR’ed together

Hit? Rubric:

 2 pt: equality block

used in calculation

 2 pt: AND gate(s)

used in calculation

 2 pt: routing element

used in calculation

(likely MUX, but

depends on solution)

