
University of Washington – Computer Science & Engineering

Winter 2018 Instructor: Justin Hsia 2018-02-20

Name: _Perry_Perfect__________________

UWNetID: _perfect_______________________

Please do not turn the page until 10:30.

Instructions
 This quiz contains 4 pages, including this cover page. You may use the backs of

the pages for scratch work.

 Please clearly indicate (box, circle) your final answer.

 The quiz is closed book and closed notes.

 Please silence and put away all cell phones and other mobile or noise-making

devices.

 Remove all hats, headphones, and watches.

 You have 25 minutes to complete this quiz.

Advice
 Read questions carefully before starting. Read all questions first and start where

you feel the most confident to maximize the use of your time.

 There may be partial credit for incomplete answers; please show your work.

 Relax. You are here to learn.

Question Points Score
(1) SL & Timing 6 6
(2) FSM Implementation 8 8
(3) FSM Design 12 12

Total: 26 26

2

Question 1: Sequential Logic & Timing [6 pts]

Consider the following circuit diagram with ݐ௦௘௧௨௣ ൌ 5 ns (10-9 s), ݐ஼ଶொ ൌ 15 ns, ݐேை் ൌ 2 ns,

ைோݐ ൌ 10 ns, and ݐ஺ே஽ ൌ 10 ns.

(A) Calculate the minimum clock period that will allow the circuit to function correctly.

Make sure to include units. [3 pts]

௣௘௥௜௢ௗ,௠௜௡ݐ ൌ 50 ns

 The critical path is shown above in red and goes through two ORs and one AND gate.

 So we need ݐ஼ଶொ ൅ ைோݐ ൅ ஺ே஽ݐ ൅ ைோݐ ൑ ௣௘௥௜௢ௗݐ െ .௦௘௧௨௣ݐ

 Then ݐ௣௘௥௜௢ௗ ൒ 15 ൅ 10 ൅ 10 ൅ 10 ൅ 5 ൌ 50 ns.

(B) What is the theoretical maximum hold time for this circuit to function correctly?

Make sure to include units. [3 pts]

௛௢௟ௗ,௠௔௫ݐ ൌ 35 ns

 Shortest path is shown above in light blue and goes through one AND and one OR gate.

 So we need ݐ஼ଶொ ൅ ஺ே஽ݐ ൅ ைோݐ ൒ ௛௢௟ௗݐ ௛௢௟ௗ andݐ ൑ 15 ൅ 10 ൅ 10 ൌ 35 ns.

3

Question 2: Finite State Machine Implementation [8 pts]

(A) Fill in the provided truth table based on the FSM shown. [2 pts]

(B) Complete the circuit diagram below using minimal logic based on the truth table

shown below. You are welcome to use 2- and 3-input logic gates. [6 pts]

PS1 PS0 In NS1 NS0 Out1 Out0

0 0 0 X X X X

0 0 1 X X X X

0 1 0 0 1 1 0

0 1 1 1 0 0 1
1 0 0 1 0 0 1
1 0 1 1 1 1 0

1 1 0 0 1 1 1

1 1 1 1 0 1 1

PS In1 In0 NS Out

0 0 0 X X
0 0 1 0 0
0 1 0 1 0
0 1 1 0 1
1 0 0 X X
1 0 1 0 1
1 1 0 1 1
1 1 1 0 1

 11 01 10

0/11

0/10

1/01

1/10

1/11

0/01

Wire connection:

Wire crossing:

4

Question 3: Finite State Machine Design [12 pts]

(A) We are designing an FSM for a vending machine that gave no change, dispenses at 20¢,

and accepts pennies (1¢), nickels (5¢), and dimes (10¢). [4 pt]

19 states and 3 input bits. State Bits: 5 bits Max Transitions Per State: 23=8

(B) The following FSM represents a turnstile, which is locked until someone swipes their

Husky ID (input H) and then locks once you push through (input P) the unlocked gate.

The output is a light that glows red (0) or green (1).

Complete the testbench initial block to thoroughly test the state diagram. Even

though they may be unnecessary, please fill in all blanks. You are welcome to fill out the

Verilog comments to help you keep track of state, but these will not be graded. [6 pts]

(C) How many total rows are in the truth table for the turnstile FSM? How many of the

rows are filled with Don’t Cares? [2 pt]

Rows: 8 Don’t Care Rows: 2

 1 state bit + 2 input bits → 2ଷ ൌ 8 rows in truth table.

 6 transitions shown/covered in state diagram, so remaining are don’t cares.

Locked
0

Unlocked
1

HPഥ/1

HഥP/0

Pഥ/1

HഥP/0

HഥPഥ/0

Reset

initial begin

 H <= _0_; P <= _0_; // state: 0

 @(posedge clk); H <= 1; P <= 0; // state: _0_

 @(posedge clk); H <= _1_; P <= _0_; // state: _1_

 @(posedge clk); H <= 0; P <= 0; // state: _1_

 @(posedge clk); H <= _0_; P <= _1_; // state: _1_

 @(posedge clk); H <= 0; P <= 1; // state: _0_

 @(posedge clk);

 $stop();

end

