#### University of Washington - Computer Science & Engineering

Winter 2023 Instructor: Chris Thachuk 2023-01-31

# **CSE 369 QUIZ 1**

| Name:                 |  |
|-----------------------|--|
| Student ID<br>Number: |  |

# Please do not turn the page until 12:30.

#### **Instructions**

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 (+5) minutes to complete this quiz.

#### Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

| Question                | Points | Score |
|-------------------------|--------|-------|
| (1) CL Gates            | 8      |       |
| (2) K-map               | 5      |       |
| (3) Waveforms & Verilog | 10     |       |
| Total:                  | 23     |       |

## **Question 1:** Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. *No need to simplify.* Remember to use + (OR),  $\cdot$  (AND), and  $^-$  (NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts]



(B) Find a minimal implementation of the function below using only **2-input NAND gates**. *We will only accept circuit diagrams*. [6 pts]

$$F = \overline{(\overline{A} + B)\overline{C}}$$

# **Question 2:** Karnaugh Maps [5 pts]

Find the *minimum sum-of-products solution* for the K-map shown below.

|   |   |   |   | A |     |
|---|---|---|---|---|-----|
|   | 1 | 0 | 0 | X |     |
|   | X | 1 | X | 0 |     |
| С | 0 | 1 | X | 1 | l D |
|   | 1 | 0 | 1 | 1 |     |
|   |   | I | 3 |   |     |

### **Question 3:** Waveforms & Verilog [10 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pts]



```
module Mystery (F, A, B, C);
  output logic F;
  input logic A, B, C;
  logic X, Y;

   ______;
  nand G3 (F, X, Y);
  endmodule
```

(B) For the Verilog module FastOrSlow, assume the logic delays shown. If the values of A and B first become known at t=0 and output F is unknown at t=0, at what time is F first guaranteed to become known? *Remember to include* 

| NOT   | AND   | OR    |  |
|-------|-------|-------|--|
| 10 ns | 25 ns | 20 ns |  |

units. The correct time is all that is required, but an incorrect answer can receive partial credit for correctly drawing the circuit diagram. [3 pt]

```
module FastOrSlow (F, A, B);
   output logic F;
   input logic A, B;
   logic
                W, X, Y, Z;
          G1 (W, A, B);
   and
   not
          G2 (X, B);
          G3 (Y, A, X);
   or
   and
          G4 (Z, W, Y);
   not
          G5 (F, Z);
endmodule
```

```
t =
```