University of Washington – Computer Science & Engineering

Winter 2023 Instructor: Chris Thachuk 2023-01-31

CSE 369 QUIZ 1

Name: __Molly_Model____

Student ID Number: 1234567

Please do not turn the page until 12:30.

Instructions

- This quiz contains 3 pages, including this cover page. You may use the backs of the pages for scratch work.
- Please clearly indicate (box, circle) your final answer.
- The quiz is closed book and closed notes.
- Please silence and put away all cell phones and other mobile or noise-making devices.
- Remove all hats, headphones, and watches.
- You have 20 (+5) minutes to complete this quiz.

Advice

- Read questions carefully before starting. Read *all* questions first and start where you feel the most confident to maximize the use of your time.
- There may be partial credit for incomplete answers; please show your work.
- Relax. You are here to learn.

Question	Points	Score
(1) CL Gates	8	8
(2) K-map	5	5
(3) Waveforms & Verilog	10	10
Total:	23	23

Question 1: Combinational Logic Gates [8 pts]

(A) Write out a Boolean expression for the circuit diagram below. *No need to simplify*. Remember to use + (OR), \cdot (AND), and $^-$ (NOT) as well as any necessary parentheses to make your answer unambiguous. [2 pts]

$$\mathbf{F} = \overline{(\overline{A \cdot B}) + (\overline{C} \cdot (B + C))}$$

$$X = \overline{A \cdot B} \qquad [0.5 \text{ pt}]$$

$$Y = B + C \qquad [0.5 \text{ pt}]$$

$$Z = \overline{C} \cdot Y \qquad [0.5 \text{ pt}]$$

$$F = \overline{X + Z} \qquad [0.5 \text{ pt}]$$

- (B) Find a minimal implementation of the function below using only **2-input NAND gates**. *We will only accept circuit diagrams*. [6 pts]
 - $F = \overline{(\overline{A} + B)\overline{C}}$
- [2 pt] Valid gate conversion from expression
- [2 pt] DeMorgan's applications (in expression or gates)
- [2 pt] Conversion of extra NOTs to NANDs

Question 2: Karnaugh Maps [5 pts]

Find the *minimum sum-of-products solution* for the K-map shown below.

$$= BD + AC + \overline{B} \overline{D}$$

[2 pt] X choices[1pt each] Correct term / grouping[-0.5pt each] Smaller grouping used[-0.5pt each] Extra grouping included

Question 3: Waveforms & Verilog [10 pts]

(A) Consider the Verilog simulated testbench waveforms shown. If we know that X and Y are outputs of 2-input logic gates, complete the module Mystery below. [7 pts]

For both X and Y:

[2 pt] Correct input signals

[1pt] Correct gate uses

Overall:

[1 pt] Correct Verilog syntax

(B) For the Verilog module FastOrSlow, assume the logic delays shown. If the values of A and B first become known at t=0 and output F is unknown at t=0, at what time is F first guaranteed to become known? Remember to include

NOT	AND	OR
10 ns	25 ns	20 ns

units. The correct time is all that is required, but an incorrect answer can receive partial credit for correctly drawing the circuit diagram. [3 pt]

```
module FastOrSlow (F, A, B);
   output logic F;
   input logic A, B;
   logic
                W, X, Y, Z;
          G1 (W, A, B);
   and
          G2 (X, B);
   not
          G3 (Y, A, X);
   or
          G4 (Z, W, Y);
   and
   not
          G5 (F, Z);
endmodule
```



```
t = 65 ns
```