
Section 5
Finite State Machines

Administrivia
● Lab 5: Report due next Wednesday (2/11) @ 2:30 pm,

demo by last OH on Friday (2/13), but expected during your assigned slot.
○ ⚠ This lab is harder than previous labs ⚠

● Lab 6: Report due 2/18, demo by last OH on 2/20.
○ ⚠ This lab is a LOT harder than Lab 5 ⚠

New SystemVerilog Commands

New SystemVerilog Commands
● enum – create an enumerated type with a restricted set of named values.

○ Basic usage: enum <original type> {<name_list>} <vars>;
○ <original type> must be wide enough to support the length of

<name_list>; if omitted, defaults to int type.
○ By default, names in the <name_list> are assigned consecutive values

starting from 0.
■ Can explicitly assign values using name=<value> syntax.

New SystemVerilog Commands
● enum – create an enumerated type with a restricted set of named values.

○ Basic usage: enum <original type> {<name_list>} <vars>;
○ <original type> must be wide enough to support the length of

<name_list>; if omitted, defaults to int type.
○ By default, names in the <name_list> are assigned consecutive values

starting from 0.
■ Can explicitly assign values using name=<value> syntax.

● Example: enum logic [1:0] {S0, S1, S11=2'b11} ps, ns;
○ S0 assigned 2'b00, S1 assigned 2'b01.
○ Two variables declared that can only take on the values S0, S1, and S11 (no

2'b10).

New SystemVerilog Commands
● Ternary operator – shorthand for an if-else statement using the syntax

<cond> ? <then> : <else> (same syntax as C).
○ Same syntax as C/C++.
○ Never necessary to use, just results in more compact code.
○ Very useful in combinational logic for next state and output logic.

New SystemVerilog Commands
● Ternary operator – shorthand for an if-else statement using the syntax

<cond> ? <then> : <else> (same syntax as C).
○ Same syntax as C/C++.
○ Never necessary to use, just results in more compact code.
○ Very useful in combinational logic for next state and output logic.

● Examples:
○ case (ps)

 S0: ns = w ? S1 : S0;
 S1: ns = w ? S11 : S0;
 S11: ns = w ? S11 : S0;
endcase

○ assign HEX0 = SW[0] ? leds : 7'b1111111;

Finite State Machine Implementation

FSM Implementation Notes
● The state diagram design is by far the most important part! The

SystemVerilog implementation process is fairly mechanical.
○ Best to implement from scratch rather than tweak a broken initial design.

FSM Implementation Notes
● The state diagram design is by far the most important part! The

SystemVerilog implementation process is fairly mechanical.
○ Best to implement from scratch rather than tweak a broken initial design.

● Module design notes:
○ Must have a clock input (e.g., clk, clock,

CLOCK_50) for sequential elements.
○ Should have a reset input (e.g., rst, reset) for

“initialization.”
○ Must have a present state (ps); recommended

to also have a next state (ns).

FSM Design Pattern
1) // State Encodings and Variables

a) enum to define ps and ns

2) // Next State Logic (ns)
a) always_comb or assign with blocking assignments (=)

3) // Output Logic
a) assign or always_comb with blocking assignments (=)
b) Mealy-type output example: assign out = (ps == S1) & in;

4) // State Update Logic (ps) - including reset
a) always_ff with non-blocking assignments (<=)

● The following FSM represents a Red Light, Green Light game, where a
player is only allowed to move forward (M=1) when the light is green (L=1).
Here, the player wins (output W=1) after successfully moving twice; moving
when the light is red (L=0) results in returning to the start

○ Implement this system in a module called light_game.

Exercise 1

● Module outline

Exercise 1 (Solution)

module light_game (input logic clk, reset, M, L, output logic W);

endmodule // light_game

module light_game (input logic clk, reset, M, L, output logic W);

 enum logic [1:0] {Start, Mid, Win} ps, ns;

endmodule // light_game

Exercise 1 (Solution)
● State encodings and variables

● Next state logic

module light_game (input logic clk, reset, M, L, output logic W);

 enum logic [1:0] {Start, Mid, Win} ps, ns;

 always_comb
 case (ps)
 Start: ns = (L & M) ? Mid : Start;
 Mid: ns = (L & M) ? Win : (M ? Start : Mid);
 Win: ns = M ? Start : Win;
 endcase

endmodule // light_game

Exercise 1 (Solution)

● Output logic

module light_game (input logic clk, reset, M, L, output logic W);

 enum logic [1:0] {Start, Mid, Win} ps, ns;

 always_comb
 case (ps)
 Start: ns = (L & M) ? Mid : Start;
 Mid: ns = (L & M) ? Win : (M ? Start : Mid);
 Win: ns = M ? Start : Win;
 endcase

 assign W = (ns == Win); // alt: ((ps == Mid) & L & M) |
 // ((ps == Win) & ~M)
endmodule // light_game

Exercise 1 (Solution)

● State update logic

module light_game (input logic clk, reset, M, L, output logic W);

 enum logic [1:0] {Start, Mid, Win} ps, ns;

 ... // next state logic
 ... // output logic

 always_ff @(posedge clk)
 if (reset)
 ps <= Start;
 else
 ps <= ns;

endmodule // light_game

Exercise 1 (Solution)

Exercise 2
● Below is an FSM for a modified vending machine with increased cost of

15¢ for gumballs that also accepting quarters (Q: 25¢); it still does not give
change and can only take one coin at a time.

○ Implement this system in a module called vend15.

● Module outline

Exercise 2 (Solution)

module vend15 (input logic clk, reset, N, D, Q, output logic Open);

endmodule // vend15

● State encodings and variables

module vend15 (input logic clk, reset, N, D, Q, output logic Open);
 enum logic [1:0] {Zero, Five=2'b10, Ten=2'b11} ps, ns;

endmodule // vend15

Exercise 2 (Solution)

● Next state logic

module vend15 (input logic clk, reset, N, D, Q, output logic Open);
 enum logic [1:0] {Zero, Five=2'b10, Ten=2'b11} ps, ns;

 always_comb
 case (ps)
 Zero: case ({N, D, Q})
 3'b000: ns = Zero;
 3'b100: ns = Five;
 3'b010: ns = Ten;
 3'b001: ns = Zero;

 default: ns = ps;
 endcase
 ... // Five and Ten defined similarly
 endcase
endmodule // vend15

Exercise 2 (Solution)

● Output logic

module vend15 (input logic clk, reset, N, D, Q, output logic Open);
 enum logic [1:0] {Zero, Five=2'b10, Ten=2'b11} ps, ns;

 ... // next state logic

 assign Open = Q | ((ps != Zero) & D) | ((ps == Ten) & N);

endmodule // vend15

Exercise 2 (Solution)

● State update logic

module vend15 (input logic clk, reset, N, D, Q, output logic Open);
 enum logic [1:0] {Zero, Five=2'b10, Ten=2'b11} ps, ns;

 ... // next state logic

 assign Open = Q | ((ps != Zero) & D) | ((ps == Ten) & N);

 always_ff @(posedge clk)
 if (reset)
 ps <= Zero;
 else
 ps <= ns;

endmodule // vend15

Exercise 2 (Solution)

Finite State Machine Testing

FSM Test Bench Notes
● All notes about sequential test benches from last week still apply!

○ Generate a simulated clock (don’t use clock_divider), start with a reset and
define all inputs at t=0, add extra delay at end to see the effects of your last
input changes.

● To thoroughly test your FSM, need to take every transition that we care
about (can omit/ignore don’t cares).

● Recommended test bench lines in initial block:
<input changes> @(posedge clk); // current state: ???

● In ModelSim, you should at least add ps to waveforms .
○ Could also include ns or other signals involved in ps/ns computations.

FSM Test Bench Example
 // generate test vectors
 initial begin
 reset <= 1; w <= 0; @(posedge clk); // reset
 reset <= 0; @(posedge clk); // curr state: S0
 w <= 1; @(posedge clk); // curr state: S0
 w <= 0; @(posedge clk); // curr state: S1
 w <= 1; @(posedge clk); // curr state: S0
 @(posedge clk); // curr state: S1
 @(posedge clk); // curr state: S11
 @(posedge clk); // curr state: S11
 w <= 0; @(posedge clk); // curr state: S11
 @(posedge clk); // curr state: S0 (extra cycle)

$stop; // pause the simulation
 end

FSM Test Bench Example
 // generate test vectors
 initial begin
 reset <= 1; w <= 0; @(posedge clk); // reset
 reset <= 0; @(posedge clk); // curr state: S0
 w <= 1; @(posedge clk); // curr state: S0
 w <= 0; @(posedge clk); // curr state: S1
 w <= 1; @(posedge clk); // curr state: S0
 @(posedge clk); // curr state: S1
 @(posedge clk); // curr state: S11
 @(posedge clk); // curr state: S11
 w <= 0; @(posedge clk); // curr state: S11
 @(posedge clk); // curr state: S0 (extra cycle)

$stop; // pause the simulation
 end

Exercise 3
● Create a test bench for vend15 and simulate it in ModelSim.

○ What’s the minimum number of clock cycles required to thoroughly test it?

Exercise 3 (Solution)
● Create module, declare port connections, instantiate dut.

module vend15_tb ();
 logic clk, reset, N, D, Q, Open;

 vend15 dut (.*);

endmodule // vend15_tb

Exercise 3 (Solution)
● Setup clock.

module vend15_tb ();
 ... // signal declarations and dut instantiation

 parameter T = 100;
 initial
 clk = 1'b0;
 always begin
 #(T/2) clk <= 1'b0;
 #(T/2) clk <= 1'b1;
 end

endmodule // vend15_tb

Exercise 3 (Solution)
● Define initial block and add $stop system task.

module vend15_tb ();
 ... // signal declarations and dut instantiation
 ... // clock generation

 initial begin

 $stop;
 end

endmodule // vend15_tb

Exercise 3 (Solution)
● Start with a reset and initialize all inputs.

module vend15_tb ();
 ... // signal declarations and dut instantiation
 ... // clock generation

 initial begin
 {reset,N,D,Q} <= 4'b1000; @(posedge clk); // reset

 $stop;
 end

endmodule // vend15_tb

● Map out a sequence of inputs that would allow us to test every transition.

Exercise 3 (Solution)

● Map out a sequence of inputs that would allow us to test every transition.
○ This is just one of many possibilities!

Exercise 3 (Solution)

1

2
3,5,8

4

16

10

11,13,15

1214

6

7

9

Exercise 3 (Solution)
● Add the transitions we mapped out.

module vend15_tb ();
 ... // signal declarations, dut instantiation, clock generation
 initial begin
 {reset,N,D,Q} <= 4'b1000; @(posedge clk); // reset
 {reset,N,D,Q} <= 4'b0000; @(posedge clk); // Zero (1)
 {N,D,Q} <= 3'b001; @(posedge clk); // Zero (2)
 {N,D,Q} <= 3'b100; @(posedge clk); // Zero (3)
 {N,D,Q} <= 3'b001; @(posedge clk); // Five (4)
 {N,D,Q} <= 3'b100; @(posedge clk); // Zero (5)
 {N,D,Q} <= 3'b000; @(posedge clk); // Five (6)
 {N,D,Q} <= 3'b010; @(posedge clk); // Five (7)
 {N,D,Q} <= 3'b100; @(posedge clk); // Zero (8)
 @(posedge clk); // Five (9)
 ... // continued on next slide

Exercise 3 (Solution)
● Add the transitions we mapped out.

 ... // signal declarations, dut instantiation, clock generation
 initial begin
 ... // previous clock cycles
 {N,D,Q} <= 3'b001; @(posedge clk); // Ten (10)
 {N,D,Q} <= 3'b010; @(posedge clk); // Zero (11)
 @(posedge clk); // Ten (12)
 @(posedge clk); // Zero (13)
 {N,D,Q} <= 3'b100; @(posedge clk); // Ten (14)
 {N,D,Q} <= 3'b010; @(posedge clk); // Zero (15)
 {N,D,Q} <= 3'b000; @(posedge clk); // Ten (16)
 @(posedge clk); // extra
 $stop;
 end
endmodule // vend15_tb

Exercise 3 (Solution)
● Simulation results should verify that (1) reset works, (2) the transition

between states as expected, and (3) our output matches what we expect.

Exercise 3 (Solution)
● Step 1 - Verify the reset behavior.

module vend15_tb ();
 ... // signal declarations, dut instantiation, clock generation
 initial begin
 {reset,N,D,Q} <= 4'b1000; @(posedge clk); // reset
 {reset,N,D,Q} <= 4'b0000; @(posedge clk); // Zero (1)
 ...

module vend15 (...)
 ...
 always_ff @(posedge
clk)
 if (reset)
 ps <= Zero;
 else
 ps <= ns;
 ...
endmodule // vend15

Exercise 3 (Solution)
● Step 2 - Verifying every

transition between states
as expected.

 ...
 initial begin
 {reset,N,D,Q} <= 4'b1000; @(posedge clk); // reset
 {reset,N,D,Q} <= 4'b0000; @(posedge clk); // Zero (1)
 {N,D,Q} <= 3'b001; @(posedge clk); // Zero (2)
 {N,D,Q} <= 3'b100; @(posedge clk); // Zero (3)
 {N,D,Q} <= 3'b001; @(posedge clk); // Five (4)
 {N,D,Q} <= 3'b100; @(posedge clk); // Zero (5)
 {N,D,Q} <= 3'b000; @(posedge clk); // Five (6)
 {N,D,Q} <= 3'b010; @(posedge clk); // Five (7)
 {N,D,Q} <= 3'b100; @(posedge clk); // Zero (8)
 @(posedge clk); // Five (9)
 {N,D,Q} <= 3'b001; @(posedge clk); // Ten (10)
 {N,D,Q} <= 3'b010; @(posedge clk); // Zero (11)
 @(posedge clk); // Ten (12)
 @(posedge clk); // Zero (13)
 {N,D,Q} <= 3'b100; @(posedge clk); // Ten (14)
 {N,D,Q} <= 3'b010; @(posedge clk); // Zero (15)
 {N,D,Q} <= 3'b000; @(posedge clk); // Ten (16)
 @(posedge clk); // extra
 ...

Exercise 3 (Solution)
● Step 3 - Verifying our output matches what we expect.

assign Open = Q | ((ps != Zero) & D) | ((ps == Ten) & N);

2

4

101214

7

Transitions that
should output 1:

