
Section 5
Finite State Machines



Administrivia
● Lab 5:  Report due next Wednesday (2/11) @ 2:30 pm,

demo by last OH on Friday (2/13), but expected during your assigned slot.
○ ⚠ This lab is harder than previous labs ⚠

● Lab 6:  Report due 2/18, demo by last OH on 2/20.
○ ⚠ This lab is a LOT harder than Lab 5 ⚠



New SystemVerilog Commands



New SystemVerilog Commands
● enum – create an enumerated type with a restricted set of named values.

○ Basic usage: enum <original type> {<name_list>} <vars>;
○ <original type> must be wide enough to support the length of 

<name_list>; if omitted, defaults to int type.
○ By default, names in the <name_list> are assigned consecutive values 

starting from 0.
■ Can explicitly assign values using name=<value> syntax.



New SystemVerilog Commands
● enum – create an enumerated type with a restricted set of named values.

○ Basic usage: enum <original type> {<name_list>} <vars>;
○ <original type> must be wide enough to support the length of 

<name_list>; if omitted, defaults to int type.
○ By default, names in the <name_list> are assigned consecutive values 

starting from 0.
■ Can explicitly assign values using name=<value> syntax.

● Example:  enum logic [1:0] {S0, S1, S11=2'b11} ps, ns;
○ S0 assigned 2'b00, S1 assigned 2'b01.
○ Two variables declared that can only take on the values S0, S1, and S11 (no 

2'b10).



New SystemVerilog Commands
● Ternary operator – shorthand for an if-else statement using the syntax 

<cond> ? <then> : <else> (same syntax as C).
○ Same syntax as C/C++.
○ Never necessary to use, just results in more compact code.
○ Very useful in combinational logic for next state and output logic.



New SystemVerilog Commands
● Ternary operator – shorthand for an if-else statement using the syntax 

<cond> ? <then> : <else> (same syntax as C).
○ Same syntax as C/C++.
○ Never necessary to use, just results in more compact code.
○ Very useful in combinational logic for next state and output logic.

● Examples:
○ case (ps)

  S0:  ns = w ? S1  : S0;
  S1:  ns = w ? S11 : S0;
  S11: ns = w ? S11 : S0;
endcase

○ assign HEX0 = SW[0] ? leds : 7'b1111111;



Finite State Machine Implementation



FSM Implementation Notes
● The state diagram design is by far the most important part! The 

SystemVerilog implementation process is fairly mechanical.
○ Best to implement from scratch rather than tweak a broken initial design.



FSM Implementation Notes
● The state diagram design is by far the most important part! The 

SystemVerilog implementation process is fairly mechanical.
○ Best to implement from scratch rather than tweak a broken initial design.

● Module design notes:
○ Must have a clock input (e.g., clk, clock, 

CLOCK_50) for sequential elements.
○ Should have a reset input (e.g., rst, reset) for 

“initialization.”
○ Must have a present state (ps); recommended 

to also have a next state (ns).



FSM Design Pattern
1)  // State Encodings and Variables

a) enum to define ps and ns

2)  // Next State Logic (ns)
a) always_comb or assign with blocking assignments (=)

3)  // Output Logic
a) assign or always_comb with blocking assignments (=)
b) Mealy-type output example:  assign out = (ps == S1) & in;

4)  // State Update Logic (ps) - including reset
a) always_ff with non-blocking assignments (<=)



● The following FSM represents a Red Light, Green Light game, where a 
player is only allowed to move forward (M=1) when the light is green (L=1). 
Here, the player wins (output W=1) after successfully moving twice; moving 
when the light is red (L=0) results in returning to the start

○ Implement this system in a module called light_game.

Exercise 1



● Module outline

Exercise 1 (Solution)

module light_game (input logic clk, reset, M, L, output logic W);

endmodule  // light_game



module light_game (input logic clk, reset, M, L, output logic W);

  enum logic [1:0] {Start, Mid, Win} ps, ns;

endmodule  // light_game

Exercise 1 (Solution)
● State encodings and variables



● Next state logic

module light_game (input logic clk, reset, M, L, output logic W);

  enum logic [1:0] {Start, Mid, Win} ps, ns;

  always_comb
    case (ps)
      Start: ns = (L & M) ? Mid : Start;
      Mid:   ns = (L & M) ? Win : (M ? Start : Mid);
      Win:   ns = M ? Start : Win;
    endcase

endmodule  // light_game

Exercise 1 (Solution)



● Output logic

module light_game (input logic clk, reset, M, L, output logic W);

  enum logic [1:0] {Start, Mid, Win} ps, ns;

  always_comb
    case (ps)
      Start: ns = (L & M) ? Mid : Start;
      Mid:   ns = (L & M) ? Win : (M ? Start : Mid);
      Win:   ns = M ? Start : Win;
    endcase

  assign W = (ns == Win);  // alt: ((ps == Mid) & L & M) | 
                           //      ((ps == Win) & ~M)
endmodule  // light_game

Exercise 1 (Solution)



● State update logic

module light_game (input logic clk, reset, M, L, output logic W);

  enum logic [1:0] {Start, Mid, Win} ps, ns;

  ...  // next state logic
  ...  // output logic

  always_ff @(posedge clk)
    if (reset)
      ps <= Start;
    else
      ps <= ns;

endmodule  // light_game

Exercise 1 (Solution)



Exercise 2
● Below is an FSM for a modified vending machine with increased cost of 

15¢ for gumballs that also accepting quarters (Q: 25¢); it still does not give 
change and can only take one coin at a time.

○ Implement this system in a module called vend15.



● Module outline

Exercise 2 (Solution)

module vend15 (input logic clk, reset, N, D, Q, output logic Open);

endmodule  // vend15



● State encodings and variables

module vend15 (input logic clk, reset, N, D, Q, output logic Open);
  enum logic [1:0] {Zero, Five=2'b10, Ten=2'b11} ps, ns;

endmodule  // vend15

Exercise 2 (Solution)



● Next state logic

module vend15 (input logic clk, reset, N, D, Q, output logic Open);
  enum logic [1:0] {Zero, Five=2'b10, Ten=2'b11} ps, ns;

  always_comb
    case (ps)
      Zero: case ({N, D, Q})
              3'b000: ns = Zero; 
              3'b100: ns = Five;
              3'b010: ns = Ten;
              3'b001: ns = Zero;

 default: ns = ps;
            endcase
      ...  // Five and Ten defined similarly
    endcase
endmodule  // vend15

Exercise 2 (Solution)



● Output logic

module vend15 (input logic clk, reset, N, D, Q, output logic Open);
  enum logic [1:0] {Zero, Five=2'b10, Ten=2'b11} ps, ns;

  ...  // next state logic

  assign Open = Q | ((ps != Zero) & D) | ((ps == Ten) & N);

endmodule  // vend15

Exercise 2 (Solution)



● State update logic

module vend15 (input logic clk, reset, N, D, Q, output logic Open);
  enum logic [1:0] {Zero, Five=2'b10, Ten=2'b11} ps, ns;

  ...  // next state logic

  assign Open = Q | ((ps != Zero) & D) | ((ps == Ten) & N);

  always_ff @(posedge clk)
    if (reset)
      ps <= Zero;
    else
      ps <= ns;

endmodule  // vend15

Exercise 2 (Solution)



Finite State Machine Testing



FSM Test Bench Notes
● All notes about sequential test benches from last week still apply!

○ Generate a simulated clock (don’t use clock_divider), start with a reset and 
define all inputs at t=0, add extra delay at end to see the effects of your last 
input changes.

● To thoroughly test your FSM, need to take every transition that we care 
about (can omit/ignore don’t cares).

● Recommended test bench lines in initial block:
<input changes> @(posedge clk);  // current state: ???

● In ModelSim, you should at least add ps to waveforms .
○ Could also include ns or other signals involved in ps/ns computations.



FSM Test Bench Example
  // generate test vectors
  initial begin
    reset <= 1; w <= 0; @(posedge clk);  // reset
    reset <= 0;         @(posedge clk);  // curr state: S0
                w <= 1; @(posedge clk);  // curr state: S0
               w <= 0; @(posedge clk);  // curr state: S1
               w <= 1; @(posedge clk);  // curr state: S0
                        @(posedge clk);  // curr state: S1
                        @(posedge clk);  // curr state: S11
                        @(posedge clk);  // curr state: S11
                w <= 0; @(posedge clk);  // curr state: S11
                        @(posedge clk);  // curr state: S0 (extra cycle)

$stop;  // pause the simulation
   end



FSM Test Bench Example
  // generate test vectors
  initial begin
    reset <= 1; w <= 0; @(posedge clk);  // reset
    reset <= 0;         @(posedge clk);  // curr state: S0
                w <= 1; @(posedge clk);  // curr state: S0
               w <= 0; @(posedge clk);  // curr state: S1
               w <= 1; @(posedge clk);  // curr state: S0
                        @(posedge clk);  // curr state: S1
                        @(posedge clk);  // curr state: S11
                        @(posedge clk);  // curr state: S11
                w <= 0; @(posedge clk);  // curr state: S11
                        @(posedge clk);  // curr state: S0 (extra cycle)

$stop;  // pause the simulation
   end



Exercise 3
● Create a test bench for vend15 and simulate it in ModelSim.

○ What’s the minimum number of clock cycles required to thoroughly test it?



Exercise 3 (Solution)
● Create module, declare port connections, instantiate dut.

module vend15_tb ();
  logic clk, reset, N, D, Q, Open;
  
  vend15 dut (.*);
  

  

  
endmodule  // vend15_tb



Exercise 3 (Solution)
● Setup clock.

module vend15_tb ();
  ...  // signal declarations and dut instantiation

  parameter T = 100;
  initial
    clk = 1'b0;
  always begin
    #(T/2)  clk <= 1'b0;
    #(T/2)  clk <= 1'b1;
  end

endmodule  // vend15_tb



Exercise 3 (Solution)
● Define initial block and add $stop system task.

module vend15_tb ();
  ...  // signal declarations and dut instantiation
  ...  // clock generation

  initial begin

    $stop; 
  end

endmodule  // vend15_tb



Exercise 3 (Solution)
● Start with a reset and initialize all inputs.

module vend15_tb ();
  ...  // signal declarations and dut instantiation
  ...  // clock generation

  initial begin
    {reset,N,D,Q} <= 4'b1000; @(posedge clk);  // reset

    $stop; 
  end

endmodule  // vend15_tb



● Map out a sequence of inputs that would allow us to test every transition.

Exercise 3 (Solution)



● Map out a sequence of inputs that would allow us to test every transition.
○ This is just one of many possibilities!

Exercise 3 (Solution)

1

2
3,5,8

4

16

10

11,13,15

1214

6

7

9



Exercise 3 (Solution)
● Add the transitions we mapped out.

module vend15_tb ();
  ...  // signal declarations, dut instantiation, clock generation
  initial begin
    {reset,N,D,Q} <= 4'b1000; @(posedge clk);  // reset
    {reset,N,D,Q} <= 4'b0000; @(posedge clk);  // Zero (1)
          {N,D,Q} <= 3'b001;  @(posedge clk);  // Zero (2)
          {N,D,Q} <= 3'b100;  @(posedge clk);  // Zero (3)
          {N,D,Q} <= 3'b001;  @(posedge clk);  // Five (4)
          {N,D,Q} <= 3'b100;  @(posedge clk);  // Zero (5)
          {N,D,Q} <= 3'b000;  @(posedge clk);  // Five (6)
          {N,D,Q} <= 3'b010;  @(posedge clk);  // Five (7)
          {N,D,Q} <= 3'b100;  @(posedge clk);  // Zero (8)
                              @(posedge clk);  // Five (9)
    ...  // continued on next slide



Exercise 3 (Solution)
● Add the transitions we mapped out.

  ...  // signal declarations, dut instantiation, clock generation
  initial begin
    ...  // previous clock cycles
          {N,D,Q} <= 3'b001;  @(posedge clk);  // Ten  (10)
          {N,D,Q} <= 3'b010;  @(posedge clk);  // Zero (11)
                              @(posedge clk);  // Ten  (12)
                              @(posedge clk);  // Zero (13)
          {N,D,Q} <= 3'b100;  @(posedge clk);  // Ten  (14)
          {N,D,Q} <= 3'b010;  @(posedge clk);  // Zero (15)
          {N,D,Q} <= 3'b000;  @(posedge clk);  // Ten  (16)
                              @(posedge clk);  // extra
    $stop;
  end
endmodule  // vend15_tb



Exercise 3 (Solution)
● Simulation results should verify that (1) reset works, (2) the transition 

between states as expected, and (3) our output matches what we expect.



Exercise 3 (Solution)
● Step 1 - Verify the reset behavior.

module vend15_tb ();
  ...  // signal declarations, dut instantiation, clock generation
  initial begin
    {reset,N,D,Q} <= 4'b1000; @(posedge clk);  // reset
    {reset,N,D,Q} <= 4'b0000; @(posedge clk);  // Zero (1)
    ...

module vend15 (...)
  ...
  always_ff @(posedge 
clk)
    if (reset)
      ps <= Zero;
    else
      ps <= ns;
  ...
endmodule  // vend15



Exercise 3 (Solution)
● Step 2 - Verifying every 

transition between states 
as expected.

  ...  
  initial begin
    {reset,N,D,Q} <= 4'b1000; @(posedge clk);  // reset
    {reset,N,D,Q} <= 4'b0000; @(posedge clk);  // Zero (1)
          {N,D,Q} <= 3'b001;  @(posedge clk);  // Zero (2)
          {N,D,Q} <= 3'b100;  @(posedge clk);  // Zero (3)
          {N,D,Q} <= 3'b001;  @(posedge clk);  // Five (4)
          {N,D,Q} <= 3'b100;  @(posedge clk);  // Zero (5)
          {N,D,Q} <= 3'b000;  @(posedge clk);  // Five (6)
          {N,D,Q} <= 3'b010;  @(posedge clk);  // Five (7)
          {N,D,Q} <= 3'b100;  @(posedge clk);  // Zero (8)
                              @(posedge clk);  // Five (9)
          {N,D,Q} <= 3'b001;  @(posedge clk);  // Ten  (10)
          {N,D,Q} <= 3'b010;  @(posedge clk);  // Zero (11)
                              @(posedge clk);  // Ten  (12)
                              @(posedge clk);  // Zero (13)
          {N,D,Q} <= 3'b100;  @(posedge clk);  // Ten  (14)
          {N,D,Q} <= 3'b010;  @(posedge clk);  // Zero (15)
          {N,D,Q} <= 3'b000;  @(posedge clk);  // Ten  (16)
                              @(posedge clk);  // extra
   ... 



Exercise 3 (Solution)
● Step 3 - Verifying our output matches what we expect.

assign Open = Q | ((ps != Zero) & D) | ((ps == Ten) & N);
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should output 1:


