Section 3

Test Benches

Administrivia

e Lab 3: Report due next Wednesday (1/28) @ 2:30 pm,
demo by last OH on Friday (1/30), but expected during your assigned slot.

e Lab 4: Report due 2/4, demo by last OH on 2/6

New SystemVerilog Commands

e always_comb - higher-level description of more complex combinational
behavior.

o Used to combine multiple assignment statements or express more situational
assignments.

e case/endcase - describe desired behavior situationally (based on value

of expression)
o Like a switch statement in other languages, but no fall-through and no break.
o Use default to cover remaining cases.

e Use begin and end to group multiple statements together.
o Like { and } in other languages.
o e.g., to put multiple statements in one always_comb or for one case

Test Benches

Writing a Test Bench

1) Start with the module skeleton (module / endmodule).
a) Please use the naming convention of <module_name>_tb

2) Create signals for all ports of the module you're going to test.
a) Suggested to copy-and-paste from module definition, but remove port types
(l.e., input, output).

3) Instantiate device under test (dut as instance name)
a) Port connections: .<port>(<signal>) but names match can do .<port> as
shorthand, or . x if all signal names match port names.

4) Define test vectorsin an initial block.
a) Needs to end with $stop; system task for ModelSim to pause.

Test Vectors for Combinational Logic

e Output of combinational logic is determined by current value of inputs.
o Need to run through all possible input combinations in simulation to
thoroughly test.

Test Vectors for Combinational Logic

e Output of combinational logic is determined by current value of inputs.
o Need to run through all possible input combinations in simulation to
thoroughly test.

e In order to have output values be visible in simulation, need to add

arbitrary time delays #<num>; (e.g., #10;) in-between input changes.
o Note that our ModelSim setup has all combinational logic delays set to O.

Test Vectors for Combinational Logic

e Output of combinational logic is determined by current value of inputs.
o Need to run through all possible input combinations in simulation to
thoroughly test.

e In order to have output values be visible in simulation, need to add

arbitrary time delays #<num>; (e.g., #10;) in-between input changes.
o Note that our ModelSim setup has all combinational logic delays set to O.

e (Can use “for-loop” to run through all input combinations:
for (int i; 1 < 8; 1i++) begin
// set inputs based on 1, then time delay

end
o No sequential execution just condenses your code.
s

Exercise 1

e Write a test bench for the provided seg7 module from Lecture 3.
o Be thorough, including all 16 input combinations!

module seg7 (bcd, leds);
input logic [3:0] bcd;
output logic [6:0] leds;

always_comb

case (bcd)
// Light: 6543210
4'bO00O: leds = 7'bO111111; // 6
. // implementation
4'b1001: leds = 7'bl101111; // 9
default: leds = 7'bX;

endcase

endmodule // seg7

Exercise 1 (Solution)

e First we declare our simulated port connections.
o Can copy-and-paste port declarations and remove input/output.

module seg7_tb ();
logic [3:0] bcd;
logic [6:0] leds;

endmodule // seg7_tb

Exercise 1 (Solution)

e Instantiate device under test.

module seg7_tb ();
logic [3:0] bcd;
logic [6:0] leds;

seg7 dut (.bcd(bcd), .leds(leds));

endmodule // seg7_tb

Exercise 1 (Solution)

e Instantiate device under test.
o Alternatively, can use . * since our signals match the port names.

module seg7_tb ();
logic [3:0] bcd;
logic [6:0] leds;

seg7 dut (.x);

endmodule // seg7_tb

Exercise 1 (Solution)

e Defineinitial block and add $stop system task.

module seg7_tb ();
logic [3:0] bcd;
logic [6:0] leds;

seg7 dut (.x);

int 1
initial begin
$stop;

end
endmodule // seg7_tb

Exercise 1 (Solution)

e Test all possible combinations of inputs.

module seg7_tb ();
// signal declarations & dut instantiation

int 1;
initial begin
for (i = 0; i < 16; i++) begin
bcd = 1; #20;
end
$stop;
end

endmodule // seg7_tb

Exercise 2

e \Write a test bench for the guessing_game module from Section 2.
o Be thorough: how many input combinations are there?

// Game to check user's 3-bit input guess against a hard-coded
secret #
// — SW[2:0] 1s the guess, KEY[0O] i1s check
// - LEDR[O] 1s <, LEDR[1] i1s ==, LEDR[2] 1s >
module guessing_game (
output logic [9:0] LEDR,
input logic [3:0] KEY,
input logic [9:0] SW
)3

// implementation

endmodule // guessing_game

Exercise 2 (Solution)

e First we declare our simulated port connections.
o Can copy-and-paste port declarations and remove input/output.

module guessing_game_tb ();
logic [9:0] LEDR;
logic [3:0] KEY;
logic [9:0] SW;

endmodule // guessing_game_tb

Exercise 2 (Solution)

e Instantiate device under test.

module guessing_game_tb ();
logic [9:0] LEDR;
logic [3:0] KEY;
logic [9:0] SW;

guessing_game dut (
.LEDR(LEDR),
.KEY (KEY) ,
.SW(SW)

)3

endmodule // guessing_game_tb

Exercise 2 (Solution)

e Instantiate device under test.
o Alternatively, can use . * since our signals match the port names

module guessing_game_tb ();
logic [9:0] LEDR;
logic [3:0] KEY;
logic [9:0] SW;

guessing_game dut (.*);

endmodule // guessing_game_tb

Exercise 2 (Solution)

e Defineinitial block and add $stop system task.

module guessing_game_tb ();
logic [9:0] LEDR;
logic [3:0] KEY;
logic [9:0] SW;

guessing_game dut (.*);
initial begin
$stop;

end
endmodule // guessing_game_tb

Exercise 2 (Solution)

e Test all possible combinations of inputs.

module guessing_game_tb ();
// signal declarations & dut instantiation

initial begin
KEY[O] = 1'bl; #10; // KEYs are active low
for (int i = 0; i < 8; 1i++) begin

SW[2:0] = i3 KEY[0] = 1'b0o; #10; // LEDs should light up
KEY[O] = 1'bl; #10; // LEDs should be disabled

end
$stop;

end

endmodule // guessing_game_tb

ModelSim Tips & Tricks

Simulation Workflow (Review)

e Double-click Launch_ModelSim.bat in the project directory.

e |n atext editor, modify runlab.do for your project:
o Add files to compile (modules + test benches).
o Change which test bench you wish to simulate.
o Change the waveform script file (x_wave . do) - this won't exist at first.

e Executedo runlab.dointhe Transcript pane.
o Use waveforms to verify/debug logical behavior of your module(s).

e Update waveform script file as desired.
o Click on different modules in the sim pane to access different signals.
o Dragsignals from the Objects pane into the Wave pane.

o With the Wave pane selected, Ctr1+S to overwrite your waveform script file.
s

Zoom Tools

Zoom tools allow you to
adjust the amount of the
simulation you can view at

once as well as the visibility = o e ‘
of the signal values. = W% |
ir . NTT T
o Critical for generating B
understandable

screenshots for your lab

reports! s

Zoom Tools

e /oomin/Zoom out &
o Allows you to change the amount of information shown at once (e.g., 200 ps at
a time, 1000 ps at a time).

e Zoom Full &

o Automatically zooms to show the whole simulation at once.
o Good for short simulations, not great for longer simulations.

e Zoom In on Active Cursor &
o Zooms in based on the location of the yellow cursor.

Object Declaration

Signal Radix - :

View k
. . . . UPF 3
e Right-click a signal in the Wave pane and use the |z Global Signal Radix...
7] N/, . . I} F t L .
Radix” menu to change the display of a signal's | cet . Smbol
v Binary
value Combine Signals... Octal
. . . G Decimal
o This does NOT change the actual bits, just how P .
we interpret them!!! Force... Eggfecima'
o Common choices: Binary (default), Unsigned, 25}3’:* Time
. Sfixed
Decimal (i.e., signed integer), Hexadecimal S— "
jﬂ_’”ﬂ Use Global Setting

|[:{ seg7_tb.sv Show Base

Numeric Enums
Symbolic Enums

T Loy wo Lty ol =1 . G

1 float32
2 floate4

Exercise 3

e Runyour guessing_game simulation in ModelSim and use it to identify a
few input combinations that produce the wrong outputs for signed integer

interpretation.
o Tools we just covered: zoom tools and signal radix.

Symbolic
+ Binary

@G @S

Hexadecimal
ASCII

Exercise 5 (Solution)

e By dragging the relevant signals from the Objects window to our Wave
window, we get the following waveform:

gi| Wave - Default o = 2] x|

“ Jauessing_game_tb KEY[0] L
£-“ [guessing_game_tb/SW i foo1 | 3 {o11_| J100 (01 | im0 | yii1 [

4 Jguessing_game_tb/LEDR[2]
4 Jguessing_game_tb/LEDR[1] |
fouessing_game_tb/LEDR[0]

Exercise 5 (Solution)

e Let's make the waveform more interpretable!
o Since we are interpreting the switch signals as signed numbers, we should
change the radix to be Decimal.

4 [guessing_game_tb/KEY[0]
£-“ Jguessing_game_tb/SW

4 Jguessing_game_tb/LEDR[2]
4 Jguessing_game_th/LEDR[1]
4 Jguessing_game_tb/LEDR[0]

Internal Signals

e ModelSim lets you add internal signals from any instantiated module to
your simulation!
o Incredibly useful to trace buggy or unexpected values to their source.
o Click [+] next to an instance name to reveal submodules (by instance name).

o Click the instance name to access different internal signals in the Objects
pane:

¥|Instance

=+# lab2_testbench 4+ HEXO
I%;_ < et

LT)-I upper_digit “« HEX2
| = lower_digit “ HEX3
| @ #ASSIGN#11 4 HEX4
| @ #ASSIGN#12 4 HEXS | @ #ASSIGN#12
| |-@ #ASSIGN#13 4. LEDR | @ #ASSIGN#13
I - #ASSIGN#14 | |CESNNaY | |-@ #ASSIGN#14
|
1

& #ASSIGN#15 @ #ASSIGN#15

¥|Instance

EFT lab2_testbench 4 DIGIT
=+l dut B84 bcd
F upper_digit “s out

| = lower_digit

| |-@ #ASSIGN#11

Exercise 3 (Debugging)

e Our secret num is 1 but our system reports that -4 is greater...?
o LEDR[2:0] = { 1s_gt&~KEY[0], is_eq&~KEY[O],/1s_ Lt&~KEY[O] };

4 Jguessing_game_tb/KEY[0]
B-“ [guessing_game_tb/SW

4 Jguessing_game_tb/LEDR[2]

4 Jguessing_game_th/LEDR[1]

4 Jguessing_game_tb/LEDR[0]

e Let'sinvestigate further:
o We know that is_gt is an output of the comparator module (instantiated
within dut as number_comparator).
o Can add sub signal from within the comparator module to the waveform!

Exercise 3 (Debugging)

e Let's investigate further:
o We know that is_greater_than is an output of the comparator module
(instantiated within dut).
o Can add sub signal from within the comparator module to the waveform!

p&| Wave - Default e

.
5 e —
. {
+ g sub |

011

4 s _gt
‘\» k_eq
4 st

e -4-1lisreturning 3'b011 (-5 can't be represented in 3 bits), so the outputs
produce unexpected values!

Lab Reports

Simulations for Lab Reports

e You are using simulations to communicate something to the reader.
o Usually, “proving” correct behavior of your circuit/system.
o Difficult to interpret on their own, so accompanying explanation is critical.
o Useful both to the grader and to you looking back on this work in the future.

Simulations for Lab Reports

e You are using simulations to communicate something to the reader.
o Usually, “proving” correct behavior of your circuit/system.
o Difficult to interpret on their own, so accompanying explanation is critical.
o Useful both to the grader and to you looking back on this work in the future.

e Goals and Tips:

o All of simulation is included - can be split across multiple images, if needed.
m Helpful to design test bench to be as concise as possible.
o Labeling - time (horizontal) axis and all signal names are clearly visible.
m Canundock = H #||x| the Wave pane to change window size or can drag vertical
divider of Transcript pane up to get time axis label closer to signals.
m Toggling to leaf names shortens signal names.
o All signal values are visible throughout the simulation.

m Changing radix can help condense but should make sense in context.
S

22| Wave - Default i 4]
. :
Bt
o

e What are we looking at here???

&l Wave - Default 35 +

e Split across two images to make values of leds legible.

e (hanged bcd radix to hexadecimal: easier to read and matches use case.
o Decimal would work here, too.

e (Can refer to specific times in simulation in explanation now.

