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Administrivia

❖ Lab 6 – Connecting multiple FSMs in Tug of War game

▪ Bigger step up in difficulty from Lab 5

▪ Putting together complex system – interconnections!

▪ Bonus points for smaller resource usage
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Outline

❖ FSM Design Example

❖ Synchronous Timing Constraints
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FSM Design Process

1) Understand the problem

2) Draw the state diagram

3) Use state diagram to produce truth table

4) Use truth table to implement combinational logic
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Vending Machine Example

❖ Vending machine description/behavior:

▪ Single coin slot for dimes and nickels

▪ Releases gumball after ≥ 10 cents 
deposited

▪ Gives no change

❖ State Diagram:
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Vending Machine State Table
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Vending Machine Implementation

❖ Open = D + PS ⋅ N

❖     NS = PS ⋅ N + PS ⋅ ഥN ⋅ ഥD
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Vending Machine Implementation

❖ Open = D + PS ⋅ N

❖     NS = PS ⋅ N + PS ⋅ ഥN ⋅ ഥD
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FSMs in Verilog (1/3) :  Declarations

❖ Let’s examine the components of the Verilog FSM example module on 
the next few slides

module vendingMachineFSM (clk, reset, n, d, open);

  input  logic clk, reset, n, d;

  output logic open;

  // State Encodings and variables

  // ps = Present State, ns = Next State

  enum logic {C0 = 1'b0, C5 = 1'b1} ps, ns;

  ...
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FSMs in Verilog (2/3) :  Combinational Logic

...

  // Next State Logic

  always_comb

    case (ps)

      C0:  if (n & ~d) ns = C5;

           else        ns = C0;

      C5:  if (n |  d) ns = C0;

           else        ns = C5;

  endcase

  // Output Logic – could have been in "always" block

  // or part of Next State Logic.

  assign open = ((ps == C0) & d) | ((ps == C5) & (n | d)) ;

  ...
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FSMs in Verilog (3/3) :  State

...

  // Sequential Logic (DFFs)

  always_ff @(posedge clk)

    if (reset)

      ps <= C0;

    else

      ps <= ns;

endmodule
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FSM Testbench  (1/2)

module vendingMachineFSM_tb(); 

  logic clk, reset, n, d;

  logic open;

 

  vendingMachineFSM dut (.clk, .reset, .n, .d, .open);  

  // Set up the clock

  parameter CLOCK_PERIOD=100; 

 

  initial begin

   clk <= 0; 

    forever #(CLOCK_PERIOD/2) clk <= ~clk;

  end

  ...
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FSM Testbench  (2/2)
// Set up the inputs to the design (each line is a clock cycle)

initial begin

    reset <= 1; n <= 0; d <= 0; @(posedge clk);

                    reset <= 0; @(posedge clk);

                                @(posedge clk);

                                @(posedge clk);

                        d <= 1; @(posedge clk);

                        d <= 0; @(posedge clk);

                        n <= 1; @(posedge clk);

                        n <= 0; @(posedge clk);

                        n <= 1; @(posedge clk);

                                @(posedge clk);

                  n <= 0; d<=1; @(posedge clk);

                          d<=0; @(posedge clk);

    $stop;  // End the simulation

end
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Testbench Waveforms

❖ What is the min # of clock cycles 
to completely test this FSM? 
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More Practice:  String Recognizer FSM

❖ Recognize the string 101 with the following behavior

▪ Input:  1 0 0 1 0 1 0 1 1 0 0 1 0 

▪ Output:  0 0 0 0 0 1 0 1 0 0 0 0 0

❖ State diagram to implementation:
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Miso Moment
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Outline

❖ FSM Design Example

❖ Synchronous Timing Constraints
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Reminder: Flip Flops

❖ A single bit of memory

❖ Copy d to q on the rising edge of the clock signal
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module DFF (q, d, clk);

  output logic q;  // q is state-holding

  input  logic d, reset, clk;

  always_ff @(posedge clk) begin

     q <= d;

  end

endmodule
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Flip-Flop Timing Terminology (1/2)

❖ Camera Analogy:  non-blurry digital photo

▪ Don’t move while camera shutter is opening

▪ Don’t move while camera shutter is closing

▪ Check for blurriness once image appears on 
the display
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Flip-Flop Timing Terminology (2/2)

❖ Now applied to sequential logic elements:

▪ Setup Time:  how long the input must be stable before the CLK trigger for proper 
input read

▪ Hold Time:  how long the input must be stable after the CLK trigger for proper 
input read

▪ “CLK-to-Q” Delay:  how long it takes the output to change, measured from the CLK 
trigger
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tclk2q

Flip-Flop Timing Behavior
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Stopwatch: timing analysis
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Model for Synchronous Digital Systems

❖ Combinational logic blocks separated by registers

▪ Clock signal connects only to sequential logic elements

▪ Feedback is optional depending on application

❖ How do we ensure proper behavior?

▪ How fast can we run our clock?
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When Can the Input Change?

❖ When a register input changes shouldn’t violate hold time (𝑡ℎ𝑜𝑙𝑑) or 
setup time (𝑡𝑠𝑒𝑡𝑢𝑝) constraints within a clock period (𝑡𝑝𝑒𝑟𝑖𝑜𝑑)

❖ Let 𝑡𝑖𝑛𝑝𝑢𝑡,𝑖 be the time it takes for the input of a register to change for 

the 𝑖-th time in a single clock cycle, measured from the CLK trigger:

▪ Then we need 𝑡ℎ𝑜𝑙𝑑 ≤ 𝑡𝑖𝑛𝑝𝑢𝑡,𝑖 ≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑡𝑠𝑒𝑡𝑢𝑝 for all 𝑖

▪ Two separate constraints!
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Minimum Delay

❖ If shortest path to register input is too short, might violate hold time 
constraint

▪ Input could change before state is “locked in”

▪ Particularly problematic with asynchronous signals
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Min Delay = min(

Min Delay ≥ Hold Time

CLK-to-Q Delay
+ Min CL Delay,
Min CL Delay)
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Maximum Clock Frequency

❖ What is the max frequency of this circuit?

▪ Limited by how much time needed to get correct Next State to Register 
(𝑡𝑠𝑒𝑡𝑢𝑝 constraint)
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Max Delay= max(

Min Period = Max Delay + Setup Time
Max Freq = 1/Min Period

CLK-to-Q Delay

+ Max CL Delay,
+ Max CL Delay)
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The Critical Path

❖ The critical path is the longest delay between any two registers 
in a circuit

❖ The clock period must be longer than this critical path, or the 
signal will not propagate properly to that next register
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Practice Question

❖ We want to run on 1 GHz processor.  tadd = 100 ps.  tmult = 200 ps.  tsetup = 
thold = 50 ps.  What is the maximum tclk-to-q we can use?
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550 ps(A) 750 ps(B) 500 ps(C) 700 ps(D)

thold ≤ tCLmin

tCLmax ≤ tperiod − tsetup
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Where Do Timing Constraints Come From?

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=40852354 
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Edge-triggered 
D flip-flop:

https://commons.wikimedia.org/w/index.php?curid=40852354
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Flip-Flop Realities:  External Inputs

❖ External inputs aren’t synchronized to the clock

▪ If not careful, can violate timing constraints

❖ What happens if input changes around clock trigger?
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Flip-Flop Realities:  Metastability

❖ Metastability occurs when a digital 
feedback loop settles into an unstable 
equilibrium storing a non-binary voltage 

▪ Can last for a potentially unbounded amount 
of time

▪ Will randomly decay to a ‘0’ or a 
‘1’….probably

❖ State elements can help reject transients

▪ Longer chains = more rejection, but longer 
signal delay
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https://www.cl.cam.ac.uk/teaching/1011/SysOnChip/slides/sp3soc

parts/zhp6e41885b8.html



CSE369, Winter 2026L6:  More FSMs, Synchronous Timing Constraints

Summary of Timing Terms

❖ Clock: steady square wave that synchronizes system

❖ Flip-flop: one bit of state that samples every rising edge of CLK (positive 
edge-triggered)

❖ Register: several bits of state that samples on rising edge of CLK (positive 
edge-triggered); often has a RESET

❖ Setup Time: when input must be stable before CLK trigger

❖ Hold Time: when input must be stable after CLK trigger

❖ CLK-to-Q Delay: how long it takes output to change from CLK trigger
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Extra: Clock Divider (not for simulation)

❖ Why/how does this work?
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// divided_clocks[0]=25MHz, [1]=12.5Mhz, ... 
module clock_divider (clock, divided_clocks);
  input  logic        clock;
  output logic [31:0] divided_clocks;

  initial
    divided_clocks = 0;

  always_ff @(posedge clock)
    divided_clocks <= divided_clocks + 1;

endmodule  // clock_divider
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Extra: Flip-Flop Realities:  Gating the Clock

❖ Delay can cause part of circuit
to get out of sync with rest

▪ More timing headaches!

▪ Adds to clock skew

❖ Hard to track non-uniform
triggers

❖ NEVER GATE THE CLOCK!!!
34
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