
CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Intro to Digital Design
L6: More FSMs, Synchronous
Timing Constraints
Instructor: Naomi Alterman

Teaching Assistants:

Derek de Leuw Isabel Froelich

Kevin Hernandez Sathvik Kanuri

Aadithya Manoj

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Administrivia

❖ Lab 6 – Connecting multiple FSMs in Tug of War game

▪ Bigger step up in difficulty from Lab 5

▪ Putting together complex system – interconnections!

▪ Bonus points for smaller resource usage

2

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Outline

❖ FSM Design Example

❖ Synchronous Timing Constraints

3

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

FSM Design Process

1) Understand the problem

2) Draw the state diagram

3) Use state diagram to produce truth table

4) Use truth table to implement combinational logic

4

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Vending Machine Example

❖ Vending machine description/behavior:

▪ Single coin slot for dimes and nickels

▪ Releases gumball after ≥ 10 cents
deposited

▪ Gives no change

❖ State Diagram:

5

Vending
Machine

FSM

Gumball
Release

Mechanism

Coin
Sensor

N
Open

D

CLK

Reset

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Vending Machine State Table

6

PS N D NS Open
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

00 01 11 10

0

1

PS,N

D

00 01 11 10

0

1

PS,N

D

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Vending Machine Implementation

❖ Open = D + PS ⋅ N

❖ NS = PS ⋅ N + PS ⋅ ഥN ⋅ ഥD

7

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Vending Machine Implementation

❖ Open = D + PS ⋅ N

❖ NS = PS ⋅ N + PS ⋅ ഥN ⋅ ഥD

8

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

FSMs in Verilog (1/3) : Declarations

❖ Let’s examine the components of the Verilog FSM example module on
the next few slides

module vendingMachineFSM (clk, reset, n, d, open);

 input logic clk, reset, n, d;

 output logic open;

 // State Encodings and variables

 // ps = Present State, ns = Next State

 enum logic {C0 = 1'b0, C5 = 1'b1} ps, ns;

 ...

9

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

FSMs in Verilog (2/3) : Combinational Logic

...

 // Next State Logic

 always_comb

 case (ps)

 C0: if (n & ~d) ns = C5;

 else ns = C0;

 C5: if (n | d) ns = C0;

 else ns = C5;

 endcase

 // Output Logic – could have been in "always" block

 // or part of Next State Logic.

 assign open = ((ps == C0) & d) | ((ps == C5) & (n | d)) ;

 ...

10

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

FSMs in Verilog (3/3) : State

...

 // Sequential Logic (DFFs)

 always_ff @(posedge clk)

 if (reset)

 ps <= C0;

 else

 ps <= ns;

endmodule

11

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

FSM Testbench (1/2)

module vendingMachineFSM_tb();

 logic clk, reset, n, d;

 logic open;

 vendingMachineFSM dut (.clk, .reset, .n, .d, .open);

 // Set up the clock

 parameter CLOCK_PERIOD=100;

 initial begin

 clk <= 0;

 forever #(CLOCK_PERIOD/2) clk <= ~clk;

 end

 ...

12

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

FSM Testbench (2/2)
// Set up the inputs to the design (each line is a clock cycle)

initial begin

 reset <= 1; n <= 0; d <= 0; @(posedge clk);

 reset <= 0; @(posedge clk);

 @(posedge clk);

 @(posedge clk);

 d <= 1; @(posedge clk);

 d <= 0; @(posedge clk);

 n <= 1; @(posedge clk);

 n <= 0; @(posedge clk);

 n <= 1; @(posedge clk);

 @(posedge clk);

 n <= 0; d<=1; @(posedge clk);

 d<=0; @(posedge clk);

 $stop; // End the simulation

end

13

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Testbench Waveforms

❖ What is the min # of clock cycles
to completely test this FSM?

14

C0
(00)

C5
(01)

10/0

10/1

00/0

00/0

01/1

Reset

01/1

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

More Practice: String Recognizer FSM

❖ Recognize the string 101 with the following behavior

▪ Input: 1 0 0 1 0 1 0 1 1 0 0 1 0

▪ Output: 0 0 0 0 0 1 0 1 0 0 0 0 0

❖ State diagram to implementation:

15

00 01 11 10

0

1

00 01 11 10

0

1

00 01 11 10

0

1

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Miso Moment

16

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Outline

❖ FSM Design Example

❖ Synchronous Timing Constraints

17

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Reminder: Flip Flops

❖ A single bit of memory

❖ Copy d to q on the rising edge of the clock signal

18

module DFF (q, d, clk);

 output logic q; // q is state-holding

 input logic d, reset, clk;

 always_ff @(posedge clk) begin

 q <= d;

 end

endmodule

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Flip-Flop Timing Terminology (1/2)

❖ Camera Analogy: non-blurry digital photo

▪ Don’t move while camera shutter is opening

▪ Don’t move while camera shutter is closing

▪ Check for blurriness once image appears on
the display

19

vs.

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Flip-Flop Timing Terminology (2/2)

❖ Now applied to sequential logic elements:

▪ Setup Time: how long the input must be stable before the CLK trigger for proper
input read

▪ Hold Time: how long the input must be stable after the CLK trigger for proper
input read

▪ “CLK-to-Q” Delay: how long it takes the output to change, measured from the CLK
trigger

20

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

tclk2q

Flip-Flop Timing Behavior

21

clk

d

q

tsetup thold
Input d must be
stable in this
window!

+

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Stopwatch: timing analysis

22

• As bits ripple through adder, Si is temporarily wrong!

• BUT! Register always captures correct value

• In good circuits, instability never
happens around rising edge of CLK

rst

clk

d (si)

q (si-1)

si

1

1 2

2

3

3

4

4

5

5

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Model for Synchronous Digital Systems

❖ Combinational logic blocks separated by registers

▪ Clock signal connects only to sequential logic elements

▪ Feedback is optional depending on application

❖ How do we ensure proper behavior?

▪ How fast can we run our clock?

23

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

When Can the Input Change?

❖ When a register input changes shouldn’t violate hold time (𝑡ℎ𝑜𝑙𝑑) or
setup time (𝑡𝑠𝑒𝑡𝑢𝑝) constraints within a clock period (𝑡𝑝𝑒𝑟𝑖𝑜𝑑)

❖ Let 𝑡𝑖𝑛𝑝𝑢𝑡,𝑖 be the time it takes for the input of a register to change for

the 𝑖-th time in a single clock cycle, measured from the CLK trigger:

▪ Then we need 𝑡ℎ𝑜𝑙𝑑 ≤ 𝑡𝑖𝑛𝑝𝑢𝑡,𝑖 ≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑡𝑠𝑒𝑡𝑢𝑝 for all 𝑖

▪ Two separate constraints!

24

clk

D

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Minimum Delay

❖ If shortest path to register input is too short, might violate hold time
constraint

▪ Input could change before state is “locked in”

▪ Particularly problematic with asynchronous signals

25

Min Delay = min(

Min Delay ≥ Hold Time

CLK-to-Q Delay
+ Min CL Delay,
Min CL Delay)

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Maximum Clock Frequency

❖ What is the max frequency of this circuit?

▪ Limited by how much time needed to get correct Next State to Register
(𝑡𝑠𝑒𝑡𝑢𝑝 constraint)

26

Max Delay= max(

Min Period = Max Delay + Setup Time
Max Freq = 1/Min Period

CLK-to-Q Delay

+ Max CL Delay,
+ Max CL Delay)

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

+R
e

g

R
e

g

The Critical Path

❖ The critical path is the longest delay between any two registers
in a circuit

❖ The clock period must be longer than this critical path, or the
signal will not propagate properly to that next register

27

1

2

3

4

Critical Path =
 CLK-to-Q Delay
 + CL Delay 1
 + CL Delay 2
 + CL Delay 3
 + Adder Delay
 + Setup Time

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Practice Question

❖ We want to run on 1 GHz processor. tadd = 100 ps. tmult = 200 ps. tsetup =
thold = 50 ps. What is the maximum tclk-to-q we can use?

28

550 ps(A) 750 ps(B) 500 ps(C) 700 ps(D)

thold ≤ tCLmin

tCLmax ≤ tperiod − tsetup

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Where Do Timing Constraints Come From?

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=40852354

29

Edge-triggered
D flip-flop:

https://commons.wikimedia.org/w/index.php?curid=40852354

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Flip-Flop Realities: External Inputs

❖ External inputs aren’t synchronized to the clock

▪ If not careful, can violate timing constraints

❖ What happens if input changes around clock trigger?

30

D

Clk

Q

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Flip-Flop Realities: Metastability

❖ Metastability occurs when a digital
feedback loop settles into an unstable
equilibrium storing a non-binary voltage

▪ Can last for a potentially unbounded amount
of time

▪ Will randomly decay to a ‘0’ or a
‘1’….probably

❖ State elements can help reject transients

▪ Longer chains = more rejection, but longer
signal delay

31

https://www.cl.cam.ac.uk/teaching/1011/SysOnChip/slides/sp3soc

parts/zhp6e41885b8.html

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Summary of Timing Terms

❖ Clock: steady square wave that synchronizes system

❖ Flip-flop: one bit of state that samples every rising edge of CLK (positive
edge-triggered)

❖ Register: several bits of state that samples on rising edge of CLK (positive
edge-triggered); often has a RESET

❖ Setup Time: when input must be stable before CLK trigger

❖ Hold Time: when input must be stable after CLK trigger

❖ CLK-to-Q Delay: how long it takes output to change from CLK trigger

32

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Extra: Clock Divider (not for simulation)

❖ Why/how does this work?

33

// divided_clocks[0]=25MHz, [1]=12.5Mhz, ...
module clock_divider (clock, divided_clocks);
 input logic clock;
 output logic [31:0] divided_clocks;

 initial
 divided_clocks = 0;

 always_ff @(posedge clock)
 divided_clocks <= divided_clocks + 1;

endmodule // clock_divider

CSE369, Winter 2026L6: More FSMs, Synchronous Timing Constraints

Extra: Flip-Flop Realities: Gating the Clock

❖ Delay can cause part of circuit
to get out of sync with rest

▪ More timing headaches!

▪ Adds to clock skew

❖ Hard to track non-uniform
triggers

❖ NEVER GATE THE CLOCK!!!
34

Enable

Clock

C

D Flip-Flop

Clock
Enable

D Q

C

	Slide 1: Intro to Digital Design L6: More FSMs, Synchronous Timing Constraints
	Slide 2: Administrivia
	Slide 3: Outline
	Slide 4: FSM Design Process
	Slide 5: Vending Machine Example
	Slide 6: Vending Machine State Table
	Slide 7: Vending Machine Implementation
	Slide 8: Vending Machine Implementation
	Slide 9: FSMs in Verilog (1/3) : Declarations
	Slide 10: FSMs in Verilog (2/3) : Combinational Logic
	Slide 11: FSMs in Verilog (3/3) : State
	Slide 12: FSM Testbench (1/2)
	Slide 13: FSM Testbench (2/2)
	Slide 14: Testbench Waveforms
	Slide 15: More Practice: String Recognizer FSM
	Slide 16
	Slide 17: Outline
	Slide 18: Reminder: Flip Flops
	Slide 19: Flip-Flop Timing Terminology (1/2)
	Slide 20: Flip-Flop Timing Terminology (2/2)
	Slide 21: Flip-Flop Timing Behavior
	Slide 22: Stopwatch: timing analysis
	Slide 23: Model for Synchronous Digital Systems
	Slide 24: When Can the Input Change?
	Slide 25: Minimum Delay
	Slide 26: Maximum Clock Frequency
	Slide 27: The Critical Path
	Slide 28: Practice Question
	Slide 29: Where Do Timing Constraints Come From?
	Slide 30: Flip-Flop Realities: External Inputs
	Slide 31: Flip-Flop Realities: Metastability
	Slide 32: Summary of Timing Terms
	Slide 33: Extra: Clock Divider (not for simulation)
	Slide 34: Extra: Flip-Flop Realities: Gating the Clock

