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Administrivia

+» Lab 6 — Connecting multiple FSMs in Tug of War game
= Bigger step up in difficulty from Lab 5
" Putting together complex system — interconnections!
" Bonus points for smaller resource usage
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Outline

<~ FSM Design Example
+ Synchronous Timing Constraints
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FSM Design Process

1) Understand the problem
2) Draw the state diagram
3) Use state diagram to produce truth table

4) Use truth table to implement combinational logic
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Vending Machine Example

+» Vending machine description/behavior:
= Single coin slot for dimes and nickels

= Releases gumball after > 10 cents
deposited

= Gives no change

+ State Diagram:

L6: More FSMs, Synchronous Timing Constraints

Coin _N>

Sensor _>D

Reset—>

Vending
Machine
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CLK 4
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Vending Machine State Table

PS,N
PS| N | D |NS|Open SN 00 01 11 10
0010 .
olo|1 1
ol11]0
o111
T 1010 PS,N
1 0 1 D 00 01 11 10
11110 0
1111 1
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Vending Machine Implementation

« Open =D+ PS-N
NS=PS-N+PS-N-D ©oren@
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Vending Machine Implementation

« Open =D+ PS-N

NS=PS-N+PS-N-D oren@ ‘FI.I
|

CLK|™ 0] 0
N D
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FSMs in Verilog (1/3) : Declarations

+ Let’s examine the components of the Verilog FSM example module on
the next few slides

module vendingMachineFSM (clk, reset, n, d, open);
input 1logic clk, reset, n, d;

output logic open;

// State Encodings and variables
// ps = Present State, ns = Next State
enum logic {CO = 1'b0, C5 = 1'bl} ps, ns;
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FSMs in Verilog (2/3) : Combinational Logic

// Next State Logic
always comb
case (ps)
CO0: 1f (n & ~d) ns = Cbh;

else ns = CO;
C5: 1f (n | d) ns = CO;
else ns = Cb5;

endcase
// Output Logic - could have been in "always" block

// or part of Next State Logic.
assign open = ((ps == C0) & d) | ((ps == C5) & (n | d))
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FSMs in Verilog (3/3) : State

// Sequential Logic (DFFs)
always ff ( (posedge clk)

1f (reset)
ps <= CO;
else

ps <= ns;

endmodule
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FSM Testbench (1/2)

module vendingMachineFSM tb();
logic clk, reset, n, d;

logic open;

vendingMachineFSM dut (.clk, .reset, .n, .d, .open);

// Set up the clock
parameter CLOCK PERIOD=100;

initial begin

clk <= 0;

forever # (CLOCK PERIOD/2) clk <= ~clk;
end
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FSM Testbench (2/2)

// Set up the inputs to the design (each line is a clock cycle)

initial begin

n <= 0; d<=1;
d<=0,; d
Sstop; // End the simulation

reset <= 1; n <= 0; d <= 0; @(posedge clk);
reset <= 0; @ (posedge clk);
@ (posedge clk) ;
@ (posedge clk) ;
d <= 1; (@ (posedge clk);
d <= 0; @ (posedge clk);
n <= 1; (@ (posedge clk);
n <= 0; (@ (posedge clk);
n <= 1; (@ (posedge clk);
@ )
@ )
( )

end
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Testbench W_aveforms

Pm
Cursor1 | Ops m

00/0 10/ 0
+» What is the min # of clock cyc[c?s /\/\; 00/0
to completely test this FSM? = Reset
10/1
01/1

01/1
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More Practice: String Recognizer FSM

+» Recognize the string 101 with the following behavior
"lnpput: 1 © 01 60610110010
" Qutput: 0 © O 0 O10O010060O060O0O06

+ State diagram to implementation:

00 01 11 10 00 01 11 10 00 01 11 10
0 0 0
1 1 1
Dut

D
PS0 Jepo
e | |I'I

enl)
CLK-J 15
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Miso Moment
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Outline

+» FSM Design Example
% Synchronous Timing Constraints

17



WA/ UNIVERSITY of WASHINGTON L6: More FSMs, Synchronous Timing Constraints CSE369, Winter 2026

Reminder: Flip Flops

+ A single bit of memory
+» Copy d to q on the rising edge of the clock signal

module DFF (g, d, clk);
output logic q; // g is state-holding
input 1logic d, reset, clk;

always ff @ (posedge clk) begin — d q

q <= d;
end .t:ffk__
Ik

C
endmodule

18



CSE369, Winter 2026

W UNIVERSITY of WASHINGTON L6: More FSMs, Synchronous Timing Constraints

Flip-Flop Timing Terminology (1/2)

+» Camera Analogy: non-blurry digital photo
= Don’t move while camera shutter is opening
= Don’t move while camera shutter is closing

= Check for blurriness once image appears on
the display

\ 2
H
£
7
=
=
x
-
3
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Flip-Flop Timing Terminology (2/2)

+» Now applied to sequential logic elements:

= Setup Time: how long the input must be stable before the CLK trigger for proper
input read

" Hold Time: how long the input must be stable after the CLK trigger for proper
input read

= “CLK-to-Q” Delay: how long it takes the output to change, measured from the CLK
trigger

20
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Flip-Flop Timing Behavior . Input d must be
setup * thoId — stable in this
|f_/\|Al window!
I :
[
clk : :
l I I

]

-1

clk
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Stopwatch: timing analysis

* As bits ripple through adder, S, is temporarily wrong!
 BUT! Register always captures correct value

* In good circuits, instability never
happens around rising edge of CLK

1+a
0 +S+—S|
b
0 == 1
rst d
clk
q

3 | a4 | s ]

Q(Si-l)[ I 1 I 2 I
1) 2 7] 3 7]

O

s | s 7
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Model for Synchronous Digital Systems

clock _[1I1 | jnput

input

¥ output
+» Combinational logic blocks separated by registers

" Clock signal connects only to sequential logic elements

"= Feedback is optional depending on application

+» How do we ensure proper behavior?

" How fast can we run our clock?
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When Can the Input Change?

+ When a register input changes shouldn’t violate hold time (t;,,;4) or
setup time (ts.,p) constraints within a clock period (t,eri0q)

« Let typye,; be the time it takes for the input of a register to change for
the i-th time in a single clock cycle, measured from the CLK trigger:
" Then we need ty,10 < tinput,i < tperiod — tsetup foralli

= Two separate constraints!

ik | | |
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Minimum Delay

+ If shortest path to register input is too short, might violate hold time
constraint
" |nput could change before state is “locked in”
= Particularly problematic with asynchronous signals

Inputs Outputs
Combirjational , .
o omL:Laictlona ., Min Delay = min(CLK-to-Q Delay
+ 4
Next State Min CL Delay)

Y

Register Min Delay = Hold Time

25
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Maximum Clock Frequency

+» What is the max frequency of this circuit?

" Limited by how much time needed to get correct Next State to Register
(tsetup CONSstraint)

Inputs Outguts
Combiletional _
Lok _ Max Delay= max(CLK-to-Q Delay
+

| Next State + Max CL Delay)

Register Min Period = Max Delay + Setup Time
Current Stat Max Freq = 1/Min Period

26
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The Critical Path

+» The critical path is the longest delay between any two registers
In a circuit

+» The clock period must be longer than this critical path, or the
signal will not propagate properly to that next register

Critical Path =
3 CLK-to-Q Delay
. J7 + CL Delay 1
v v ﬁl vl o+ CL Delay 2
-3 et 4 |8 + CL Delay 3
oo 1 + Adder Delay

+ Setup Time

27
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. . 1:hold < tCLmin
Practice QUESthn tcLmax = tperiod — tsetup

+ We want to run on 1 GHz processor. t_,, =100 ps. t
toq = 50 ps. What is the maximum t

=200 ps. t

mult —
we can use?

setup

clk-to-q

(A) (B) 750 ps (C) (D) 700 ps

28
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Where Do Timing Constraints Come From?

Edge-triggered
D flip-flop:

Clocko—

Q|

Datac

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=40852354

29


https://commons.wikimedia.org/w/index.php?curid=40852354

WA/ UNIVERSITY of WASHINGTON L6: More FSMs, Synchronous Timing Constraints CSE369, Winter 2026

Flip-Flop Realities: External Inputs

+ External inputs aren’t synchronized to the clock

" |f not careful, can violate timing constraints

+» What happens if input changes around clock trigger?

D__/
Ck __/

Q_ 7
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Flip-Flop Realities: Metastability

4

+» Metastability occurs when a digital
feedback loop settles into an unstable
equilibrium storing a non-binary voltage

= Can last for a potentially unbounded amount
of time

= Will randomly decay toa ‘0O’ or a

‘ 1' il p ro b a b Iy https://www.cl.cam.ac.uk/teaching/1011/SysOnChip/slides/sp3soc
parts/zhp6e41885b8. html

+ State elements can help reject transients

" Longer chains = more rejection, but longer
signal delay

L)
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Summary of Timing Terms

Clock: steady square wave that synchronizes system

Flip-flop: one bit of state that samples every rising edge of CLK (positive
edge-triggered)

Register: several bits of state that samples on rising edge of CLK (positive
edge-triggered); often has a RESET

Setup Time: when input must be stable before CLK trigger
Hold Time: when input must be stable after CLK trigger
CLK-to-Q Delay: how long it takes output to change from CLK trigger

32
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Extra: Clock Divider (not for simulation)

+» Why/how does this work?

// divided_clocks[0]=25MHz, [1]=12.5Mhz,
module clock_divider (clock, divided_clocks);
input logic clock;
output logic [31:0] divided_clocks;

initial
divided_clocks = 0;

always_ff @(posedge clock)
divided_clocks <= divided_clocks + 1;

endmodule // clock _divider

33
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Extra: Flip-Flop Realities: Gating the Clock

+ Delay can cause part of circuit
to get out of sync with rest D D Flip-Flop Q
" More timing headaches! /\

= Adds to clock skew Clock _.D_ C
+ Hard to track non-uniform Enable —

triggers

Enable
Clock
C

1
+» NEVER GATE THE CLOCK!!!
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