
CSE369, Winter 2026L5: Finite State Machines

Intro to Digital Design
L5: Finite State Machines

Instructor: Naomi Alterman

Teaching Assistants:

Derek de Leuw Isabel Froelich

Kevin Hernandez Sathvik Kanuri

Aadithya Manoj

CSE369, Winter 2026L5: Finite State Machines

Administrivia

❖ Quiz 1 today, grades out Friday

▪ Both the quiz and solutions will be added to the question bank on the course
website

❖ Lab 5 – Verilog implementation of FSMs

▪ Step up in difficulty from Labs 1-4 (worth 100 points)

▪ Bonus points for minimal logic
• Simplification through design (Verilog does the rest)

2

CSE369, Winter 2026L5: Finite State Machines

Outline

❖ Sequential Logic in Verilog

❖ Finite State Machines

❖ FSMs in Verilog

3

CSE369, Winter 2026L5: Finite State Machines

Reminder: Flip Flops

❖ A single bit of memory

❖ Copy d to q on the rising edge of the clock signal

4

module DFF (q, d, clk);

 output logic q; // q is state-holding

 input logic d, reset, clk;

 always_ff @(posedge clk) begin

 q <= d;

 end

endmodule

CSE369, Winter 2026L5: Finite State Machines

Reminder: “always_comb” blocks

❖ Verilog requires us to wrap control flow statements in an
always_comb block
▪ Block defines the full set of circuits that may drive the value on a logic variable

▪ Idea: the last assignment in an always block to a given variable is the result that
gets used

❖ But I promised there were more species of “always” block…

5

CSE369, Winter 2026L5: Finite State Machines

Sequential “always” blocks

❖ General always blocks:

▪ “Always” running, but its output only gets sampled when signals in the
sensitivity list change:

always @(posedge clk)

❖ always_ff:

▪ Forces SystemVerilog to use flip flops as the stateful element in the circuit

▪ Only use always_ff for sequential logic in this class, never always

always_ff @ (posedge clk)

6

CSE369, Winter 2026L5: Finite State Machines

Blocking vs. Nonblocking

❖ Blocking statement (=): statements executed sequentially

▪ Resembles programming languages

❖ Nonblocking statement (<=): statements executed “in parallel”

▪ Resembles hardware

❖ Example:

7

always_ff @ (posedge clk)

begin

 b = a;

 c = b;

end

always_ff @ (posedge clk)

begin

 b <= a;

 c <= b;

end

CSE369, Winter 2026L5: Finite State Machines

SystemVerilog Coding Guidelines

1) When modeling sequential logic with an always_ff block, use nonblocking
assignments (<=)

2) When modeling combinational logic with an always_comb block, use
blocking assignments (=)

3) When modeling both sequential and combinational logic within the same
always_ff block, use nonblocking assignments

4) Do not mix blocking and nonblocking assignments in the same always_*
block

5) Do not make assignments to the same variable from more than one
always_* block

8

CSE369, Winter 2026L5: Finite State Machines

Verilog: Reset Functionality

❖ Option 1: synchronous reset

9

module DFFR (q, d, reset, clk);

 output logic q; // q is state-holding

 input logic d, reset, clk;

 always_ff @(posedge clk)

 if (reset)

 q <= 0; // on reset, set to 0

 else

 q <= d; // otherwise pass d to q

endmodule

CSE369, Winter 2026L5: Finite State Machines

Verilog: Reset Functionality

❖ Option 2: asynchronous reset

10

module DFFaR (q, d, reset, clk);

 output logic q; // q is state-holding

 input logic d, reset, clk;

 always_ff @(posedge clk or posedge reset)

 if (reset)

 q <= 0; // on reset, set to 0

 else

 q <= d; // otherwise pass d to q

endmodule

CSE369, Winter 2026L5: Finite State Machines

Verilog: Simulated Clock, three ways

❖ In our testbenches we need to generate a clock signal
▪ Use “forever” block to loop testbench code for whole simulation

11

Explicit
Edges:

initial begin

 clk = 0;

 forever begin

 #50 clk = 1;

 #50 clk = 0;

 end

end

initial begin

 clk = 0;

 forever begin

 #50 clk = ~clk;

 end

end

Toggle:

parameter period = 100;

initial begin

 clk = 0;

 forever begin

 #(period/2) clk <= ~clk;

 end

end

Parameterized
clock period:

CSE369, Winter 2026L5: Finite State Machines

Verilog Testbench with Clock

12

module D_FF_testbench;

 logic CLK, reset, d;

 logic q;

 parameter PERIOD = 100;

 D_FF dut (.q, .d, .reset, .CLK); // Instantiate the D_FF

 initial CLK <= 0; // Set up clock

 always #(PERIOD/2) CLK<= ~CLK;

 initial begin // Set up signals

 d <= 0; reset <= 1;

 @(posedge CLK); reset <= 0;

 @(posedge CLK); d <= 1;

 @(posedge CLK); d <= 0;

 @(posedge CLK); #(PERIOD/4) d <= 1;

 @(posedge CLK);

 $stop(); // end the simulation

 end

endmodule

CSE369, Winter 2026L5: Finite State Machines

Simulation Timing Controls

❖ Delay: #<time>

▪ Delays by a specific amount of simulation time

▪ Can do calculations in <time>

▪ Examples: #(PERIOD/4), #50

❖ Edge-sensitive: @(<pos/negedge> signal)

▪ Delays next statement until specified transition on signal

▪ Example: @(posedge CLK)

❖ Level-sensitive Event: wait(<expression>)

▪ Delays next statement until <expression> evaluates to TRUE

▪ Example: wait(enable == 1)

13

CSE369, Winter 2026L5: Finite State Machines

ModelSim Waveforms

14

initial begin

 d <= 0; reset <= 1;

 @(posedge CLK); reset <= 0;

 @(posedge CLK); d <= 1;

 @(posedge CLK); d <= 0;

 @(posedge CLK); #(PERIOD/4) d <= 1;

 @(posedge CLK);

 $stop();

end

CSE369, Winter 2026L5: Finite State Machines

Outline

❖ Sequential Logic in Verilog

❖ Finite State Machines

❖ FSMs in Verilog

15

CSE369, Winter 2026L5: Finite State Machines

Finite State Machines (FSMs)

❖ A convenient way to conceptualize computation over time
▪ Function can be represented with a state transition diagram

▪ The state represents “what step we’re at” in a procedure

▪ The transitions represent time advancing (in units of clock cycles)

▪ You’ve seen these before in CSE311

❖ New for CSE369: Implement FSMs in hardware as synchronous
digital systems
▪ Flip-flops/registers hold “state”

▪ Controller (state update, I/O)
implemented in combinational
logic

16

. . .

CSE369, Winter 2026L5: Finite State Machines

FSMs, philosophically

❖ George Mealy defined1 data like this:

1. There is the real world, as it is

2. There are the mental conceptions of that world, that exist in our heads

3. There are fragments of those conceptions, and that is what we call data
data

❖ He also invented “Mealy Machine” FSMs, but that’s where his head was
at

17

1 G. H. Mealy, "Another Look at Data," AFIPS, pp. 525-534,

1967 Proceedings of the Fall Joint Computer Conference, 1967.

http://doi.ieeecomputersociety.org/10.1109/AFIPS.1967.112

http://doi.ieeecomputersociety.org/10.1109/AFIPS.1967.112

CSE369, Winter 2026L5: Finite State Machines

State Diagrams

❖ Our digital logic state diagrams are defined by:
▪ A set of states S (circles)

▪ A transition function that maps from the current input and current state to
the output and the next state (arrows between states)

▪ An initial state s0 (only arrow not between states)

❖ State transitions are controlled by the clock:
▪ On each clock cycle the machine checks the inputs and generates a new

state (could be same) and new output

❖ Note: We cover Mealy machines here; Moore machines put
outputs on states, not transitions

18

CSE369, Winter 2026L5: Finite State Machines

❖ FSM to detect 3 consecutive 1’s in the Input

Example: Buggy 3 Ones FSM

19

States: S0, S1, S2
Initial State: S0
Transitions of form:
 input/output

CSE369, Winter 2026L5: Finite State Machines

Hardware Implementation of FSM

❖ Register holds a representation of the FSM’s state

▪ Must assign a unique bit pattern for each state

▪ Output is present/current state (PS/CS)

▪ Input is next state (NS)

❖ Combinational Logic implements transition function (state
transitions + output)

20

+ =

CSE369, Winter 2026L5: Finite State Machines

FSM: Combinational Logic

❖ Read off transitions into Truth Table!

▪ Inputs: Present State (PS) and Input (In)

▪ Outputs: Next State (NS) and Output (Out)

❖ Implement logic for EACH output (2 for NS, 1 for Out)

21

PS In NS Out
00 0 00 0

00 1 01 0

01 0 00 0

01 1 10 0

10 0 00 0

10 1 00 1

CSE369, Winter 2026L5: Finite State Machines

FSM: Logic Simplification

22

PS In NS Out
00 0 00 0

00 1 01 0

01 0 00 0

01 1 10 0

10 0 00 0

10 1 00 1

11 0 XX X

11 1 XX X

00 01 11 10

0

1

PS
In

00 01 11 10

0

1

PS
In

00 01 11 10

0

1

PS
In

CSE369, Winter 2026L5: Finite State Machines

FSM: Implementation

❖ NS1 = PS0 ⋅ In

❖ NS0 = PS1 ⋅ PS0 ⋅ In

❖ Out = PS1 ⋅ In

❖ How do we test the FSM?

▪ “Take” every transition that we
care about!

23

CSE369, Winter 2026L5: Finite State Machines

State Diagram Properties

❖ For 𝑆 states, how many state bits do I use?

❖ For 𝐼 inputs, what is the maximum number of transition arrows on the
state diagram?

▪ Can sometimes combine transition arrows

▪ Can sometimes omit transitions (don’t cares)

❖ For 𝑠 state bits and 𝐼 inputs, how big is the truth table?

24

	Slide 1: Intro to Digital Design L5: Finite State Machines
	Slide 2: Administrivia
	Slide 3: Outline
	Slide 4: Reminder: Flip Flops
	Slide 5: Reminder: “always_comb” blocks
	Slide 6: Sequential “always” blocks
	Slide 7: Blocking vs. Nonblocking
	Slide 8: SystemVerilog Coding Guidelines
	Slide 9: Verilog: Reset Functionality
	Slide 10: Verilog: Reset Functionality
	Slide 11: Verilog: Simulated Clock, three ways
	Slide 12: Verilog Testbench with Clock
	Slide 13: Simulation Timing Controls
	Slide 14: ModelSim Waveforms
	Slide 15: Outline
	Slide 16: Finite State Machines (FSMs)
	Slide 17: FSMs, philosophically
	Slide 18: State Diagrams
	Slide 19: Example: Buggy 3 Ones FSM
	Slide 20: Hardware Implementation of FSM
	Slide 21: FSM: Combinational Logic
	Slide 22: FSM: Logic Simplification
	Slide 23: FSM: Implementation
	Slide 24: State Diagram Properties

