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Administrivia

❖ Quiz 1 today, grades out Friday

▪ Both the quiz and solutions will be added to the question bank on the course 
website

❖ Lab 5 – Verilog implementation of FSMs

▪ Step up in difficulty from Labs 1-4 (worth 100 points)

▪ Bonus points for minimal logic
• Simplification through design (Verilog does the rest)
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Outline

❖ Sequential Logic in Verilog

❖ Finite State Machines

❖ FSMs in Verilog
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Reminder: Flip Flops

❖ A single bit of memory

❖ Copy d to q on the rising edge of the clock signal
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module DFF (q, d, clk);

  output logic q;  // q is state-holding

  input  logic d, reset, clk;

  always_ff @(posedge clk) begin

     q <= d;

  end

endmodule
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Reminder: “always_comb” blocks

❖ Verilog requires us to wrap control flow statements in an 
always_comb block
▪ Block defines the full set of circuits that may drive the value on a logic variable

▪ Idea: the last assignment in an always block to a given variable is the result that 
gets used

❖ But I promised there were more species of “always” block…
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Sequential “always” blocks 

❖ General always  blocks:

▪ “Always” running, but its output only gets sampled when signals in the 
sensitivity list change:

always @(posedge clk)

❖ always_ff:

▪ Forces SystemVerilog to use flip flops as the stateful element in the circuit

▪ Only use always_ff for sequential logic in this class, never always

always_ff @ (posedge clk)

6



CSE369, Winter 2026L5:  Finite State Machines

Blocking vs. Nonblocking

❖ Blocking statement (=):  statements executed sequentially

▪ Resembles programming languages

❖ Nonblocking statement (<=):  statements executed “in parallel”

▪ Resembles hardware

❖ Example:
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always_ff @ (posedge clk)

begin

   b  = a;

   c  = b;

end

always_ff @ (posedge clk) 

begin

   b <= a;

   c <= b;

end
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SystemVerilog Coding Guidelines

1) When modeling sequential logic with an always_ff block, use nonblocking 
assignments (<=)

2) When modeling combinational logic with an always_comb block, use 
blocking assignments (=)

3) When modeling both sequential and combinational logic within the same 
always_ff block, use nonblocking assignments

4) Do not mix blocking and nonblocking assignments in the same always_* 
block

5) Do not make assignments to the same variable from more than one 
always_* block
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Verilog:  Reset Functionality

❖ Option 1: synchronous reset
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module DFFR (q, d, reset, clk);

  output logic q;  // q is state-holding

  input  logic d, reset, clk;

  always_ff @(posedge clk)

    if (reset)

      q <= 0;      // on reset, set to 0

    else

      q <= d;      // otherwise pass d to q

endmodule
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Verilog:  Reset Functionality

❖ Option 2: asynchronous reset
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module DFFaR (q, d, reset, clk);

  output logic q;  // q is state-holding

  input  logic d, reset, clk;

  always_ff @(posedge clk or posedge reset)

    if (reset)

      q <= 0;      // on reset, set to 0

    else

      q <= d;      // otherwise pass d to q

endmodule
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Verilog:  Simulated Clock, three ways

❖ In our testbenches we need to generate a clock signal
▪ Use “forever” block to loop testbench code for whole simulation
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Explicit
Edges:

initial begin

   clk = 0;

   forever begin

      #50  clk = 1;

      #50  clk = 0;

   end

end

initial begin

   clk = 0;

   forever begin

      #50  clk = ~clk;

   end

end

Toggle:

parameter period = 100;

initial begin

   clk = 0;

   forever begin

      #(period/2)  clk <= ~clk;

   end

end

Parameterized
clock period:
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Verilog Testbench with Clock

12

module D_FF_testbench;

  logic CLK, reset, d;

  logic q;

  parameter PERIOD = 100;

  D_FF dut (.q, .d, .reset, .CLK); // Instantiate the D_FF

  initial CLK <= 0;                // Set up clock

  always #(PERIOD/2) CLK<= ~CLK;

  initial begin                  // Set up signals

                    d <= 0; reset <= 1;

    @(posedge CLK);         reset <= 0;

    @(posedge CLK); d <= 1;

    @(posedge CLK); d <= 0;

    @(posedge CLK); #(PERIOD/4) d <= 1;

    @(posedge CLK);

    $stop();                       // end the simulation

  end

endmodule
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Simulation Timing Controls

❖ Delay:  #<time>

▪ Delays by a specific amount of simulation time

▪ Can do calculations in <time>

▪ Examples:  #(PERIOD/4), #50

❖ Edge-sensitive:  @(<pos/negedge> signal)

▪ Delays next statement until specified  transition on signal

▪ Example:  @(posedge CLK)

❖ Level-sensitive Event:  wait(<expression>)

▪ Delays next statement until <expression> evaluates to TRUE

▪ Example:  wait(enable == 1)
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ModelSim Waveforms
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initial begin

                   d <= 0; reset <= 1;

   @(posedge CLK);         reset <= 0;

   @(posedge CLK); d <= 1;

   @(posedge CLK); d <= 0;

   @(posedge CLK); #(PERIOD/4) d <= 1;

   @(posedge CLK);

   $stop();

end
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Outline

❖ Sequential Logic in Verilog

❖ Finite State Machines

❖ FSMs in Verilog
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Finite State Machines (FSMs)

❖ A convenient way to conceptualize computation over time
▪ Function can be represented with a state transition diagram

▪ The state represents “what step we’re at” in a procedure

▪ The transitions represent time advancing (in units of clock cycles)

▪ You’ve seen these before in CSE311

❖ New for CSE369:  Implement FSMs in hardware as synchronous 
digital systems
▪ Flip-flops/registers hold “state”

▪ Controller (state update, I/O)
implemented in combinational
logic
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FSMs, philosophically

❖ George Mealy defined1 data like this:

1. There is the real world, as it is

2. There are the mental conceptions of that world, that exist in our heads

3. There are fragments of those conceptions, and that is what we call data 
data

❖ He also invented “Mealy Machine” FSMs, but that’s where his head was 
at 
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1 G. H. Mealy, "Another Look at Data," AFIPS, pp. 525-534,

1967 Proceedings of the Fall Joint Computer Conference, 1967.

http://doi.ieeecomputersociety.org/10.1109/AFIPS.1967.112

http://doi.ieeecomputersociety.org/10.1109/AFIPS.1967.112
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State Diagrams

❖ Our digital logic state diagrams are defined by:
▪ A set of states S (circles)

▪ A transition function that maps from the current input and current state to 
the output and the next state (arrows between states)

▪ An initial state s0  (only arrow not between states)

❖ State transitions are controlled by the clock: 
▪ On each clock cycle the machine checks the inputs and generates a new 

state (could be same) and new output

❖ Note:  We cover Mealy machines here; Moore machines put 
outputs on states, not transitions
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❖ FSM to detect 3 consecutive 1’s in the Input

Example:  Buggy 3 Ones FSM
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States:  S0, S1, S2
Initial State:  S0
Transitions of form:
 input/output
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Hardware Implementation of FSM

❖ Register holds a representation of the FSM’s state

▪ Must assign a unique bit pattern for each state

▪ Output is present/current state (PS/CS)

▪ Input is next state (NS)

❖ Combinational Logic implements transition function (state 
transitions + output)
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FSM:  Combinational Logic

❖ Read off transitions into Truth Table!

▪ Inputs: Present State (PS) and Input (In)

▪ Outputs: Next State (NS) and Output (Out)

❖ Implement logic for EACH output (2 for NS, 1 for Out)
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PS In NS Out
00 0 00 0

00 1 01 0

01 0 00 0

01 1 10 0

10 0 00 0

10 1 00 1
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FSM:  Logic Simplification
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PS In NS Out
00 0 00 0

00 1 01 0

01 0 00 0

01 1 10 0

10 0 00 0

10 1 00 1

11 0 XX X

11 1 XX X

00 01 11 10

0

1

PS
In

00 01 11 10

0

1

PS
In

00 01 11 10

0

1

PS
In
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FSM:  Implementation

❖ NS1 = PS0 ⋅ In

❖ NS0 = PS1 ⋅ PS0 ⋅ In 

❖ Out = PS1 ⋅ In

❖ How do we test the FSM?

▪ “Take” every transition that we 
care about!
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State Diagram Properties 

❖ For 𝑆 states, how many state bits do I use?

❖ For 𝐼 inputs, what is the maximum number of transition arrows on the 
state diagram?

▪ Can sometimes combine transition arrows

▪ Can sometimes omit transitions (don’t cares)

❖ For 𝑠 state bits and 𝐼 inputs, how big is the truth table?
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