WA/ UNIVERSITY of WASHINGTON CSE369, Winter 2026

Intro to Digital Design
L5:

Instructor: Naomi Alterman

Teaching Assistants:

Derek de Leuw Isabel Froelich
Kevin Hernandez Sathvik Kanuri
Aadithya Manoj

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2026

Administrivia

+» Quiz 1 today, grades out Friday

= Both the quiz and solutions will be added to the question bank on the course
website

+» Lab 5 —Verilog implementation of FSMs
= Step up in difficulty from Labs 1-4 (worth 100 points)

" Bonus points for minimal logic
- Simplification through design (Verilog does the rest)

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2026

Outline

+» Sequential Logic in Verilog
+ Finite State Machines
+» FSMs in Verilog

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines

CSE369, Winter 2026

Reminder: Flip Flops

+ A single bit of memory
+» Copy d to q on the rising edge of the clock signal

module DFF (g, d, clk);
output logic q; // g is state-holding
input 1logic d, reset, clk;

always ff ((posedge clk) begin
q <= d;

end

endmodule

o

C

WA/ UNIVERSITY of WASHINGTON

L5: Finite State Machines

CSE369, Winter 2026

Reminder: “always_comb” blocks

+ Verilog requires us to wrap control flow statements in an
always_comb block

= Block defines the full set of circuits that may drive the value on a Log1 c variable

" |dea: the last assignment in an always block to a given variable is the result that
gets used

J
0‘0

But | promised there were more species of “always” block...

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2026

Ill

Sequential “always” blocks

+ General always blocks:

= “Always” running, but its output only gets sampled when signals in the
sensitivity list change:

always ((posedge clk)

+ always ff:
" Forces SystemVerilog to use flip flops as the stateful element in the circuit
" Onlyuse always ff forsequential logicin this class, never always

always ff @ (posedge clk)

WA/ UNIVERSITY of WASHINGTON

L5: Finite State Machines

Blocking vs. Nonblocking

+ Blocking statement (=): statements executed sequentially

= Resembles programming languages

<+ Nonblocking statement (<=): statements executed “in paralle

= Resembles hardware

+» Example:

always ff (@ (posedge clk)
begin

b = a;

c = b;

end
B
A|l® Sb
O

CLK|uJI

always ff (@ (posedge clk)

begin
b <= a;
c <= Db;
end

Al@ Sb D%I

TO TO
CLK|J™

|H

CSE369, Winter 2026

CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines

SystemVerilog Coding Guidelines

1) When modeling sequential logic with an always f£ block, use nonblocking
assignments (<=)

2) When modeling combinational logic with an always comb block, use
blocking assignments (=)

3) When modeling both sequential and combinational logic within the same
always £f block, use nonblocking assignments

4) Do not mix blocking and nonblocking assignments in the same always *
block

5) Do not make assignments to the same variable from more than one
always * block

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2026

Verilog: Reset Functionality

+ Option 1: synchronous reset

module DFFR (g, d, reset, clk);
output logic q; // g is state-holding
input 1logic d, reset, clk;

always ff ((posedge clk)
i1f (reset)

q <= 0; // on reset, set to 0
else
q <= d; // otherwise pass d to g

endmodule

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines

CSE369, Winter 2026

Verilog: Reset Functionality

+» Option 2: asynchronous reset

module DFFaR (g, d, reset, clk);
output logic q; // g is state-holding
input 1logic d, reset, clk;

always ff ((posedge clk or posedge reset)
if (reset)

g <= 0; // on reset, set to 0
else
q <= d; // otherwise pass d to g

endmodule

clk
rst

rst

10

CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines

Verilog: Simulated Clock, three ways

+ In our testbenches we need to generate a clock signal
= Use “forever” block to loop testbench code for whole simulation

Explicit | initial begin Toggle: | initial begin
Edges: clk = 0; clk = 0;
forever begin forever begin
#50 clk = 1; #50 clk = ~clk;
#50 clk = 0; end
end end
end

parameter period = 100;
initial begin

Parameterized olk = [
clock period: forever begin
(period/2) clk <= ~clk;
end

end
11

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2026

Verilog Testbench with Clock

module D FF testbench;
logic CLK, reset, d;
logic g;

parameter PERIOD = 100;
D FF dut (.q, .d, .reset, .CLK); // Instantiate the D FF

initial CLK <= 0; // Set up clock
always # (PERIOD/2) CLK<= ~CLK;

initial begin // Set up signals
d <= 0; reset <= 1;

d (posedge CLK) ; reset <= 0;

d (posedge CLK); d <= 1;

@ (posedge CLK); d <= 0;

@ (posedge CLK); # (PERIOD/4) d <= 1;

@ (posedge CLK) ;

$stop () ; // end the simulation
end

endmodule

12

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines

Simulation Timing Controls

+~ Delay: #<time>
= Delays by a specific amount of simulation time
" Can do calculationsin <time>

= Examples: # (PERIOD/4), #50

+» Edge-sensitive: @ (<pos/negedge> signal)
= Delays next statement until specified transition on signal
= Example: @ (posedge CLK)

+ Level-sensitive Event: wait (<expression>)

" Delays next statement until <expression> evaluates to TRUE
" Example: wait (enable == 1)

CSE369, Winter 2026

13

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2026

ModelSim Waveforms

/D _FF_testbench/clk
/D _FF testbench/reset

/D_FF testbench/d
/D_FF_testbench/q

initial begin

A
|

d 0; reset <= 1;
posedge CLK) ; reset <= 0;
posedge CLK

)

); d
posedge CLK); d

) #

)

A
I

1;
0;
(PERIOD/4) d <= 1;

A
I

@(
@(
@(
@ (posedge CLK

@ (posedge CLK

Sstop () ;
end

14

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2026

Outline

+» Sequential Logic in Verilog
+ Finite State Machines
+» FSMs in Verilog

15

L5: Finite State Machines CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON

Finite State Machines (FSMs)

+» A convenient way to conceptualize computation over time
" Function can be represented with a state transition diagram
" The state represents “what step we’re at” in a procedure
"= The transitions represent time advancing (in units of clock cycles)

= You’'ve seen these before in CSE311

4

- New for CSE369: Implement FSMs in hardware as synchronous
digital systems -
= Flip-flops/registers hold “state”

= Controller (state update, 1/0)
implemented in combinational

logic

)

16

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2026

FSMs, philosophically

+» George Mealy defined! data like this:
1. There is the real world, as it is
2. There are the mental conceptions of that world, that exist in our heads

3. There are fragments of those conceptions, and that is what we call data
data

+» He also invented “Mealy Machine” FSMs, but that’s where his head was

a t ¢ .f'\? ¢ .f'\.

1G. H. Mealy, "Another Look at Data," AFIPS, pp. 525-534,
1967 Proceedings of the Fall Joint Computer Conference, 1967.
http://doi.ieeecomputersociety.org/10.1109/AFIPS.1967.112 17

http://doi.ieeecomputersociety.org/10.1109/AFIPS.1967.112

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2026

State Diagrams

% Our digital logic state diagrams are defined by:
= Aset of states S (circles)

= A transition function that maps from the current input and current state to
the output and the next state (arrows between states)

" An initial state s, (only arrow not between states)

+ State transitions are controlled by the clock:

" On each clock cycle the machine checks the inputs and generates a new
state (could be same) and new output

+» Note: We cover Mealy machines here; Moore machines put
outputs on states, not transitions

18

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2026

Example: Buggy 3 Ones FSM

L)

» FSM to detect 3 consecutive 1’s in the Input

States: SO, S1, S2

Initial State: SO

Transitions of form:
input/output

Lol

il
Ju_J\

19

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines

Hardware Implementation of FSM

+ Register holds a representation of the FSM’s state
" Must assign a unique bit pattern for each state

= Qutput is present/current state (PS/CS)
" |nputis next state (NS)

+» Combinational Logic implements transition function (state
transitions + output)

Tupot

CSE369, Winter 2026

20

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines

CSE369, Winter 2026

FSM: Combinational Logic

« Read off transitions into Truth Table!

" |lnputs: Present State (PS) and Input (In)
= Qutputs: Next State (NS) and Output (Out)

PS | In | NS | Out
00 0 00 0
00 1 01 0 N
01 0 00 0
01 1 10 0 N
10 0 00 0
10 1 00 1 N
M 1

+» Implement logic for EACH output (2 for NS, 1 for Out)

21

WA/ UNIVERSITY of WASHINGTON

FSM: Logic Simplification

PS | In | NS | Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1
11 0 XX X
11 1 | XX | X

L5: Finite State Machines CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2026

FSM: Implementation

X NSl — PSO . In
X NSO — PS]_ . PSO - In
» Out = PS4 - In

«+ How do we test the FSM?

= “Take” every transition that we
care about!

23

WA/ UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2026

State Diagram Properties

+» For S states, how many state bits do | use?

+» For I inputs, what is the maximum number of transition arrows on the
state diagram?

"= Can sometimes combine transition arrows
= Can sometimes omit transitions (don’t cares)

+» For s state bits and I inputs, how big is the truth table?

24

	Slide 1: Intro to Digital Design L5: Finite State Machines
	Slide 2: Administrivia
	Slide 3: Outline
	Slide 4: Reminder: Flip Flops
	Slide 5: Reminder: “always_comb” blocks
	Slide 6: Sequential “always” blocks
	Slide 7: Blocking vs. Nonblocking
	Slide 8: SystemVerilog Coding Guidelines
	Slide 9: Verilog: Reset Functionality
	Slide 10: Verilog: Reset Functionality
	Slide 11: Verilog: Simulated Clock, three ways
	Slide 12: Verilog Testbench with Clock
	Slide 13: Simulation Timing Controls
	Slide 14: ModelSim Waveforms
	Slide 15: Outline
	Slide 16: Finite State Machines (FSMs)
	Slide 17: FSMs, philosophically
	Slide 18: State Diagrams
	Slide 19: Example: Buggy 3 Ones FSM
	Slide 20: Hardware Implementation of FSM
	Slide 21: FSM: Combinational Logic
	Slide 22: FSM: Logic Simplification
	Slide 23: FSM: Implementation
	Slide 24: State Diagram Properties

