

Intro to Digital Design

L4: Combinational Building Blocks & Sequential Logic

Instructor: Naomi Alterman

Teaching Assistants:

Derek de Leuw

Isabel Froelich

Kevin Hernandez

Sathvik Kanuri

Aadithya Manoj

Administrivia

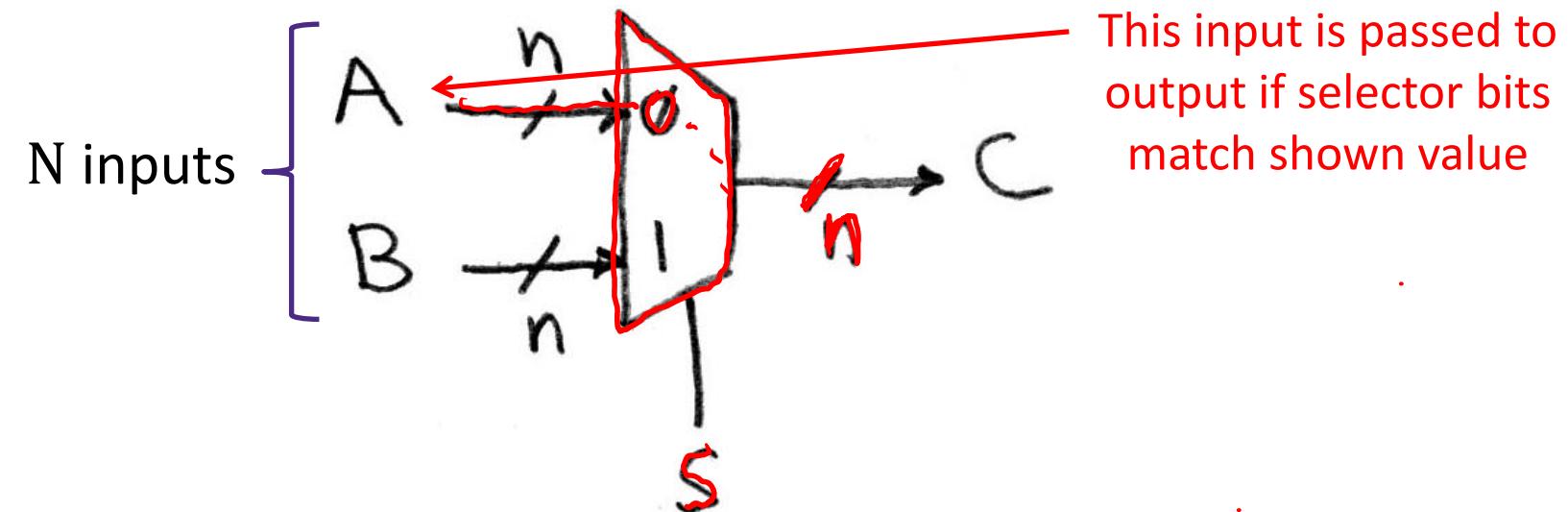
- ❖ Lab 3 Demos due during your assigned demo slots
 - Don't forget to submit your lab materials *before* Wednesday at 2:30 pm, regardless of your demo time
 - Come to lab with your reports open and bitfiles ready to load up
- ❖ Lab 4 – 7-segment displays
- ❖ Quiz 1 is next week in lecture
 - Last 20 minutes, worth 10% of your course grade
 - On Lectures 1-3: CL, K-maps, Waveforms, and Verilog
 - Past Quiz 1 (+ solutions) on website: Course Info → Quizzes

Lecture Outline

- ❖ Multiplexors
- ❖ Adders
- ❖ Sequential Logic in theory
- ❖ Sequential Logic in Verilog

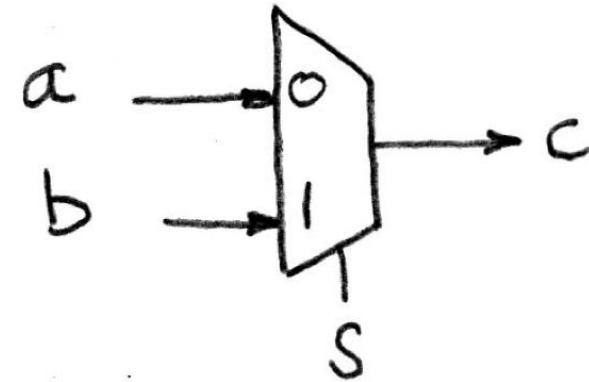
Data Multiplexor

- ❖ Multiplexor (“MUX”) is a *selector*
 - Use an s -bit “select signal” to direct one of 2^s n -bit wide inputs to output
 - Called a n -bit, N -to-1 MUX
- ❖ Example: n -bit 2-to-1 MUX
 - Input S (s bits wide) selects between two inputs of n bits each



Review: Implementing a 1-bit 2-to-1 MUX

❖ **Schematic:**



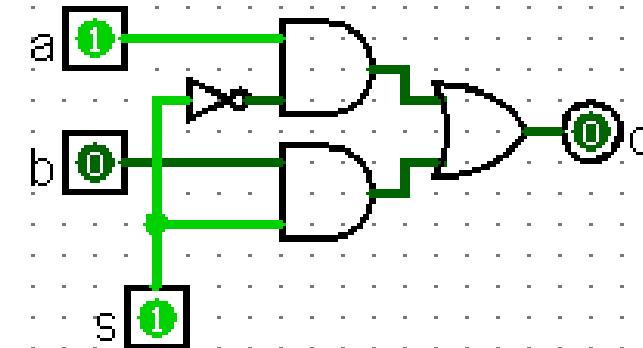
❖ **Boolean Algebra:**

$$\begin{aligned}c &= \bar{s}a\bar{b} + \bar{s}ab + s\bar{a}b + sab \\&= \bar{s}(a\bar{b} + ab) + s(\bar{a}b + ab) \\&= \bar{s}(a(\bar{b} + b)) + s((\bar{a} + a)b) \\&= \bar{s}(a(1) + s((1)b) \\&= \bar{s}a + sb\end{aligned}$$

❖ **Truth Table:**

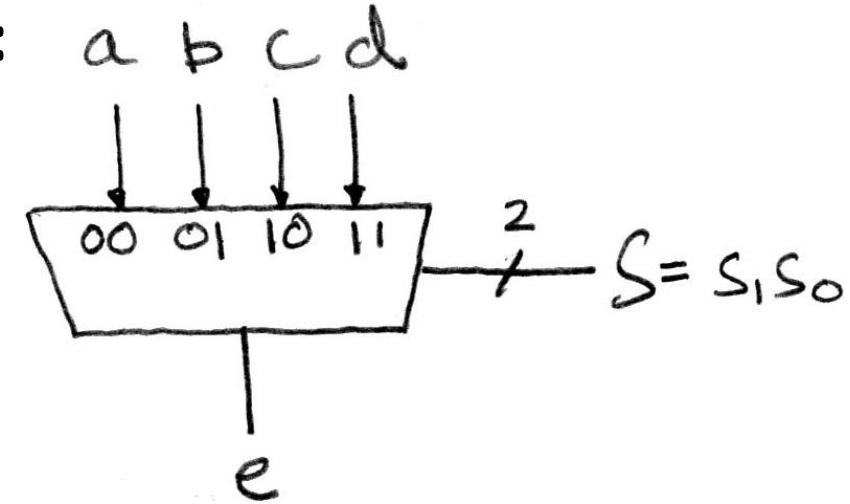
s	a	b	c
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

❖ **Circuit Diagram:**



1-bit 4-to-1 MUX

- ❖ **Schematic:**



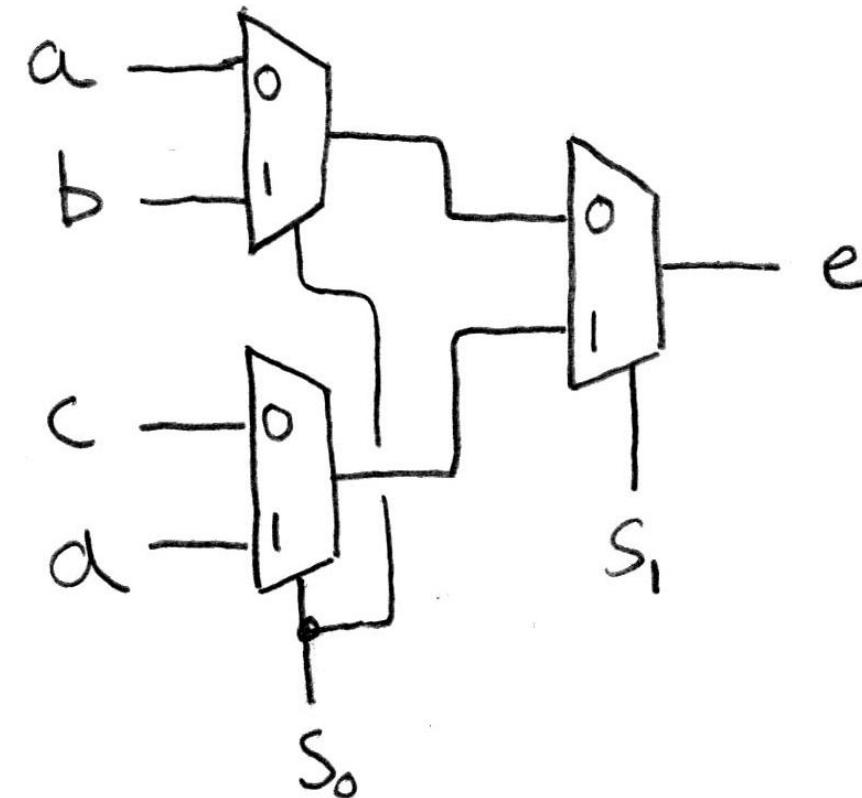
- ❖ **Truth Table:** How many rows?

- ❖ **Boolean Expression:**

$$e = \bar{s}_1 \bar{s}_0 a + \bar{s}_1 s_0 b + s_1 \bar{s}_0 c + s_1 s_0 d$$

1-bit 4-to-1 MUX

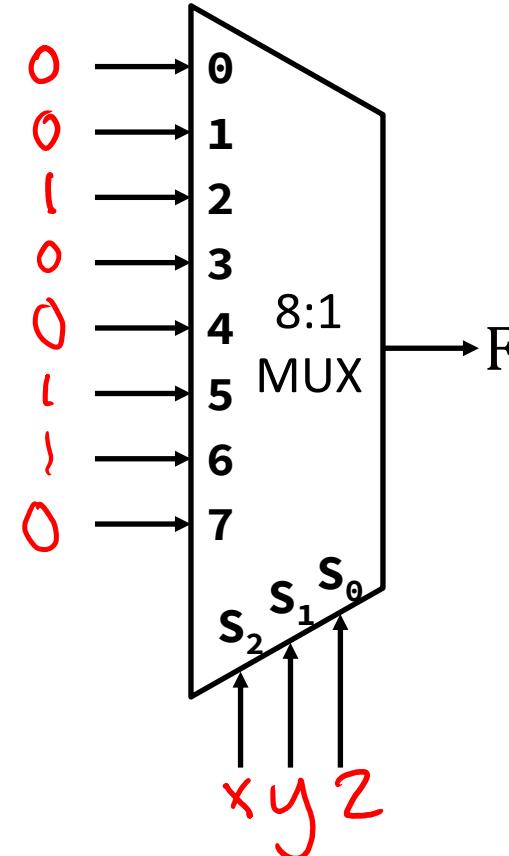
- ❖ Can we leverage what we've previously built?
 - Alternative hierarchical approach:



Multiplexers in General Logic

- ❖ Implement $F = X\bar{Y}Z + Y\bar{Z}$ with a 8:1 MUX

x	y	z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	1	1	1
1	1	0	1
1	1	1	0



Lecture Outline

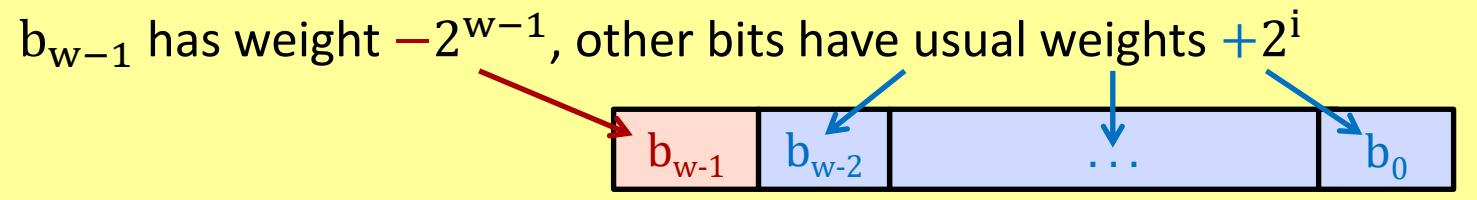
- ❖ Multiplexors
- ❖ **Adders**
- ❖ Sequential Logic in theory
- ❖ Sequential Logic in Verilog

Review: Unsigned Integers

- ❖ Unsigned values follow the standard base 2 system
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + \dots + b_12^1 + b_02^0$
- ❖ In n bits, represent integers 0 to 2^n-1
- ❖ Add and subtract using the “carry” and “borrow” rules, just in binary

$$\begin{array}{r} 63 \\ + 8 \\ \hline 71 \end{array} \quad \begin{array}{r} 00111111 \\ + 00001000 \\ \hline 01000111 \end{array} \quad \begin{array}{r} 1+1=2 \\ \text{b10} \\ \hline \end{array}$$
$$\begin{array}{r} 64 \\ - 8 \\ \hline 56 \end{array} \quad \begin{array}{r} 01000000 \\ - 00001000 \\ \hline 00111000 \end{array} \quad \begin{array}{r} 2-2=0 \\ \text{b10} \\ \hline \end{array}$$

Review: Two's Complement (Signed)

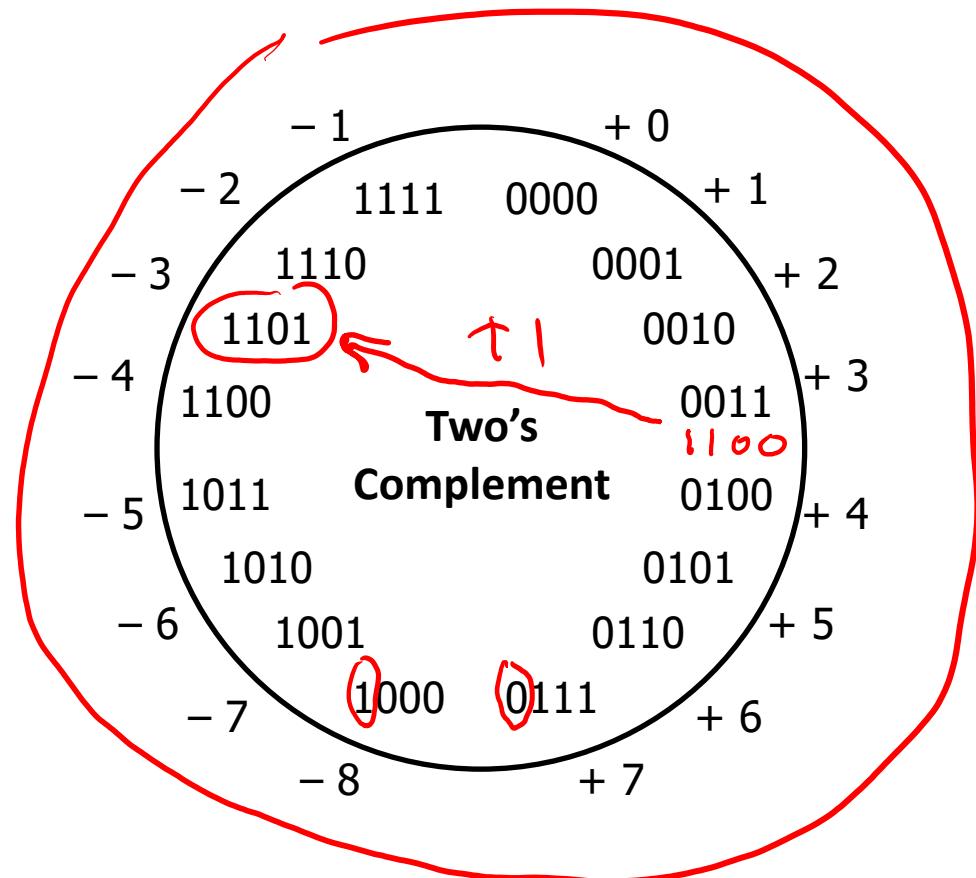


Properties:

- In n bits, represent integers -2^{n-1} to $2^{n-1} - 1$
- Positive number encodings match unsigned numbers
- Single zero (encoding = all zeros)

Negation procedure:

- Take the bitwise complement and then add one
 $(\sim x + 1 == -x)$



Addition and Subtraction in Hardware

- ❖ The same bit manipulations work for both unsigned and two's complement numbers!

- Perform subtraction via adding the negated 2nd operand:

$$A - B = A + (-B) = A + (\sim B) + 1$$

- ❖ 4-bit examples:

	Two's	Un		Two's	Un
0 0 1 0	+2	2		1 0 0 0	-8
+ 1 1 0 0	-4	12		+ 0 1 0 0	+4
<hr/>	<hr/>	<hr/>	<hr/>	<hr/>	<hr/>
1 1 1 0	-2	14		1 1 1 1	-1
<i>1 1 1 0</i>	<i>-2</i>	<i>14</i>		<i>1 1 1 1</i>	<i>-1</i>
0 1 1 0	+6	6		1 1 1 1	15
0 0 1 0	+2	2		1 1 1 0	-2
<hr/>	<hr/>	<hr/>	.	<hr/>	<hr/>
+ 1 1 0 1			.	+ 0 0 0 1	
<hr/>	<hr/>	<hr/>	.	<hr/>	<hr/>
1 0 1 0 0			.	1 0 0 0 1	

Half Adder (1 bit)

$$\begin{array}{r} a_3 \quad a_2 \quad a_1 \quad a_0 \\ + \quad b_3 \quad b_2 \quad b_1 \quad b_0 \\ \hline s_3 \quad s_2 \quad s_1 \quad s_0 \end{array}$$

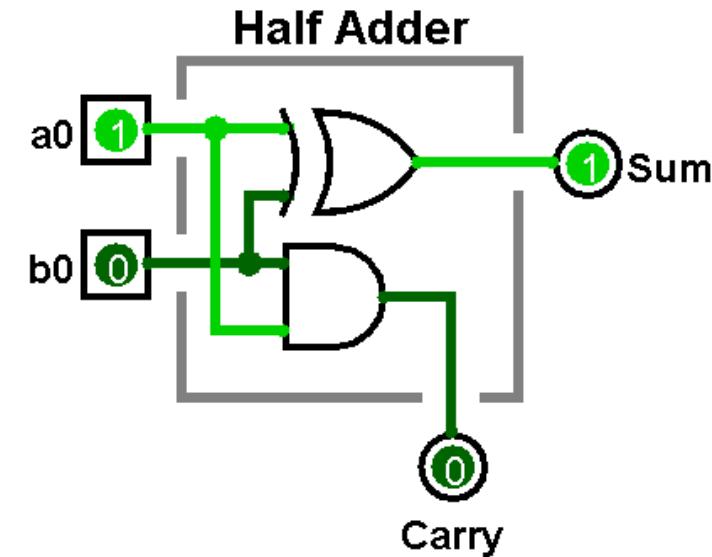
a₀ and *b₀* are highlighted with a red box. The result *s₀* is labeled with 0/1/2.

$$\begin{aligned} \text{Carry} &= a_0 b_0 \\ \text{Sum} &= a_0 \oplus b_0 \end{aligned}$$

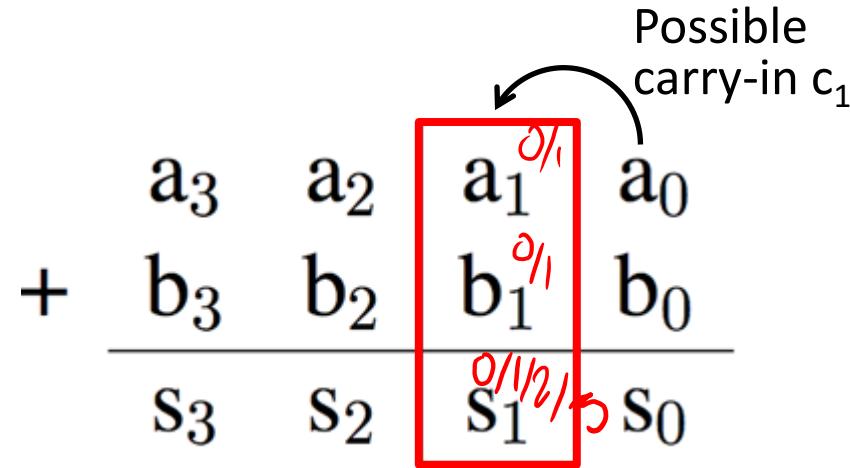
XOR is written above the sum equation with a red arrow.

<i>a₀</i>	<i>b₀</i>	<i>c₁</i>	<i>s₀</i>
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Carry-out bit is labeled with a red arrow pointing to *c₁*.



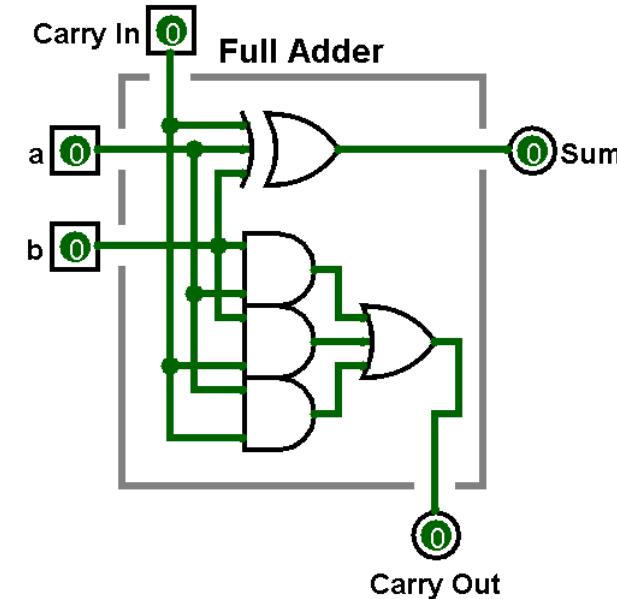
Full Adder (1 bit)



Carry-in Carry-out

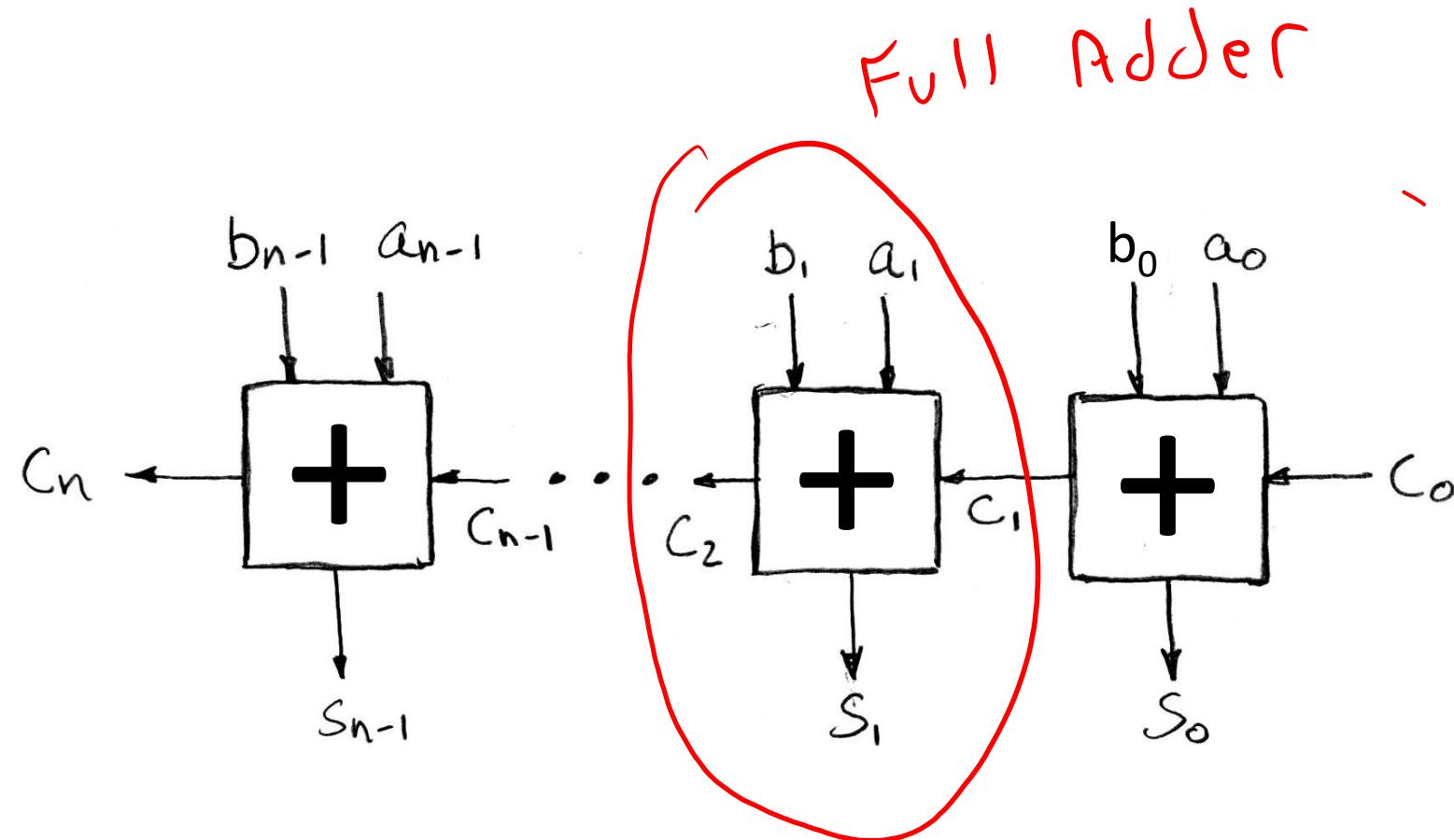
c_i	a_i	b_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

| if Majority of inputs are 1

$$\begin{aligned}
 s_i &= \text{XOR}(a_i, b_i, c_i) \\
 c_{i+1} &= \text{MAJ}(a_i, b_i, c_i) \\
 &= a_i b_i + a_i c_i + b_i c_i
 \end{aligned}$$


Multi-Bit Adder (N bits)

- ❖ Chain 1-bit adders by connecting CarryOut_i to CarryIn_{i+1} :



1-bit Adders in Verilog

- ❖ What's wrong with this?
 - Truncation!

```
module halfadd1 (s, a, b);
  output logic s;
  input logic a, b;

  always_comb begin
    s = a + b;
  end
endmodule
```

- ❖ Fixed:
 - Use of `{sig, ..., sig}` for *concatenation*

```
module halfadd2 (c, s, a, b);
  output logic c, s;
  input logic a, b;

  always_comb begin
    {c, s} = a + b;
  end
endmodule
```

2 bit signal
MSB | LSB

Ripple-Carry Adder in Verilog

```
module fulladd (cout, s, cin, a, b);
  output logic cout, s;
  input  logic cin, a, b;

  always_comb begin
    {cout, s} = cin + a + b;
  end
endmodule
```

- ❖ Chain full adders?

```
module add2 (cout, s, cin, a, b);
  output logic cout; output logic [1:0] s;
  input  logic cin;  input  logic [1:0] a, b;
  logic c1;

  fulladd b1 (cout, s[1], c1, a[1], b[1]);
  fulladd b0 (c1, s[0], cin, a[0], b[0]);
endmodule
```

Subtraction?

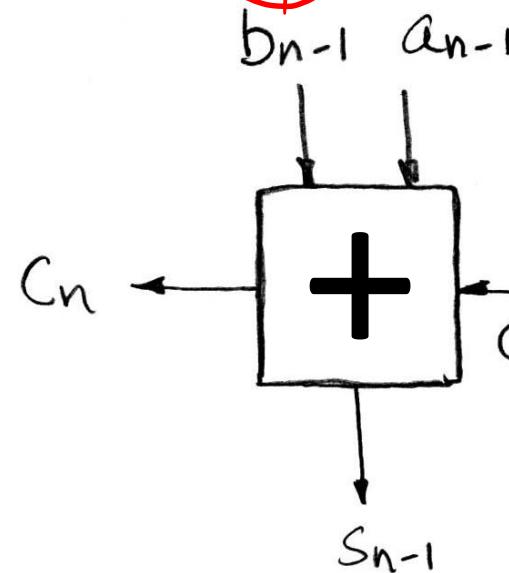
- ❖ Can we use our multi-bit adder to do subtraction?

- Flip the bits and add 1?

- $X \oplus 1 = \bar{X}$

- CarryIn_0 (using full adder in all positions)

Sub?



XOR
Sub? ~~$x \oplus y$~~ \oplus
 $0 \quad 0 \quad 0 \quad 3 \quad y$
 $0 \quad 1 \quad 1 \quad 3 \quad \bar{y}$
 $1 \quad 0 \quad 1 \quad 2 \quad \bar{y}$
 $1 \quad 1 \quad 0 \quad 0 \quad \bar{y}$

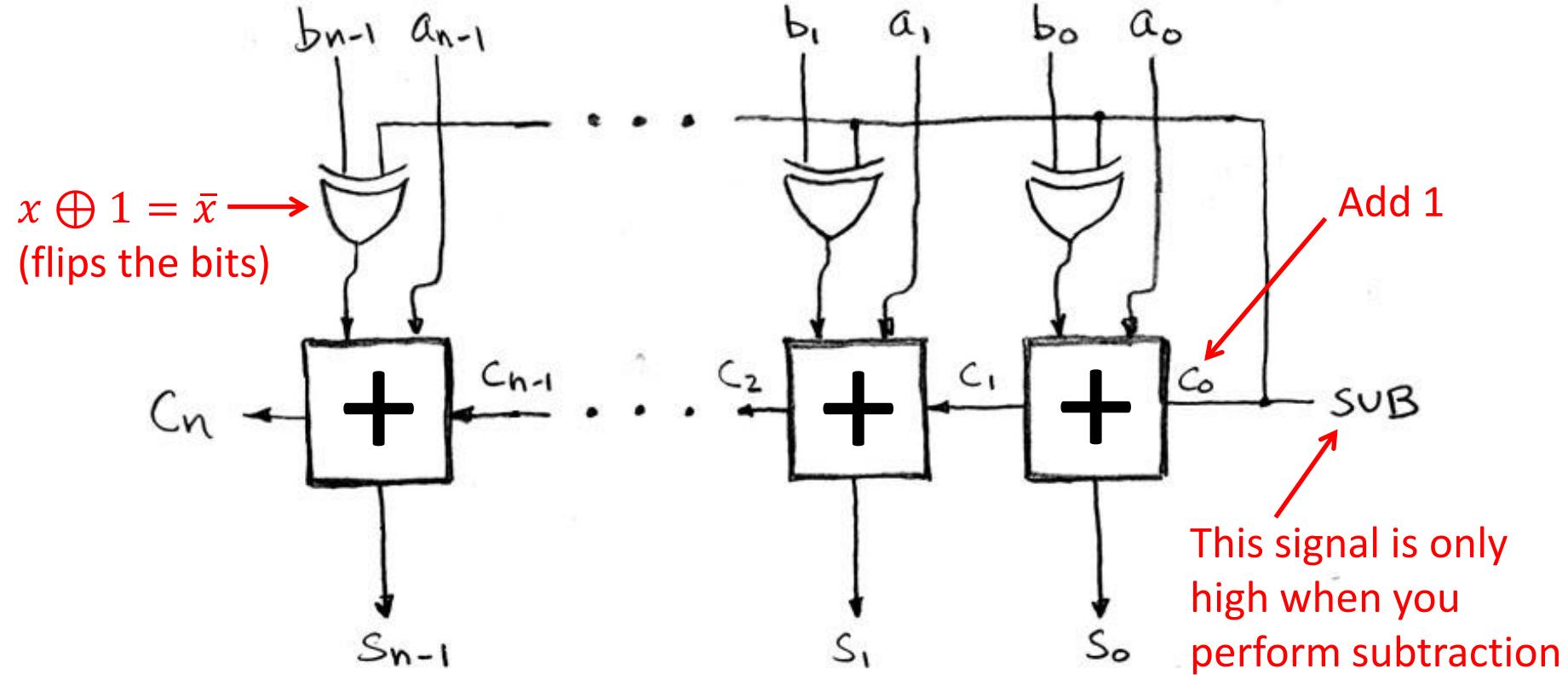
if sub:

+1

else

0

Multi-bit Adder/Subtractor



Detecting Arithmetic Overflow

- ❖ **Overflow:** When a calculation produces a result that can't be represented in the current encoding scheme

- Integer range limited by fixed width
- Can occur in both the positive and negative directions

❖ Unsigned Overflow

- Result of add/sub is > UMax or < Umin

0b11..1 0b00..0

❖ Signed Overflow

- Result of add/sub is > TMax or < TMin

- (+) + (+) = (-) or (-) + (-) = (+)

0b0111..1 0b100..0

Signed Overflow Examples

Two's

$$\begin{array}{r} 0101 \quad +5 \\ + 0011 \quad +3 \\ \hline \end{array}$$

Two's

$$\begin{array}{r} 1001 \quad -7 \\ + 1110 \quad -2 \\ \hline \end{array}$$

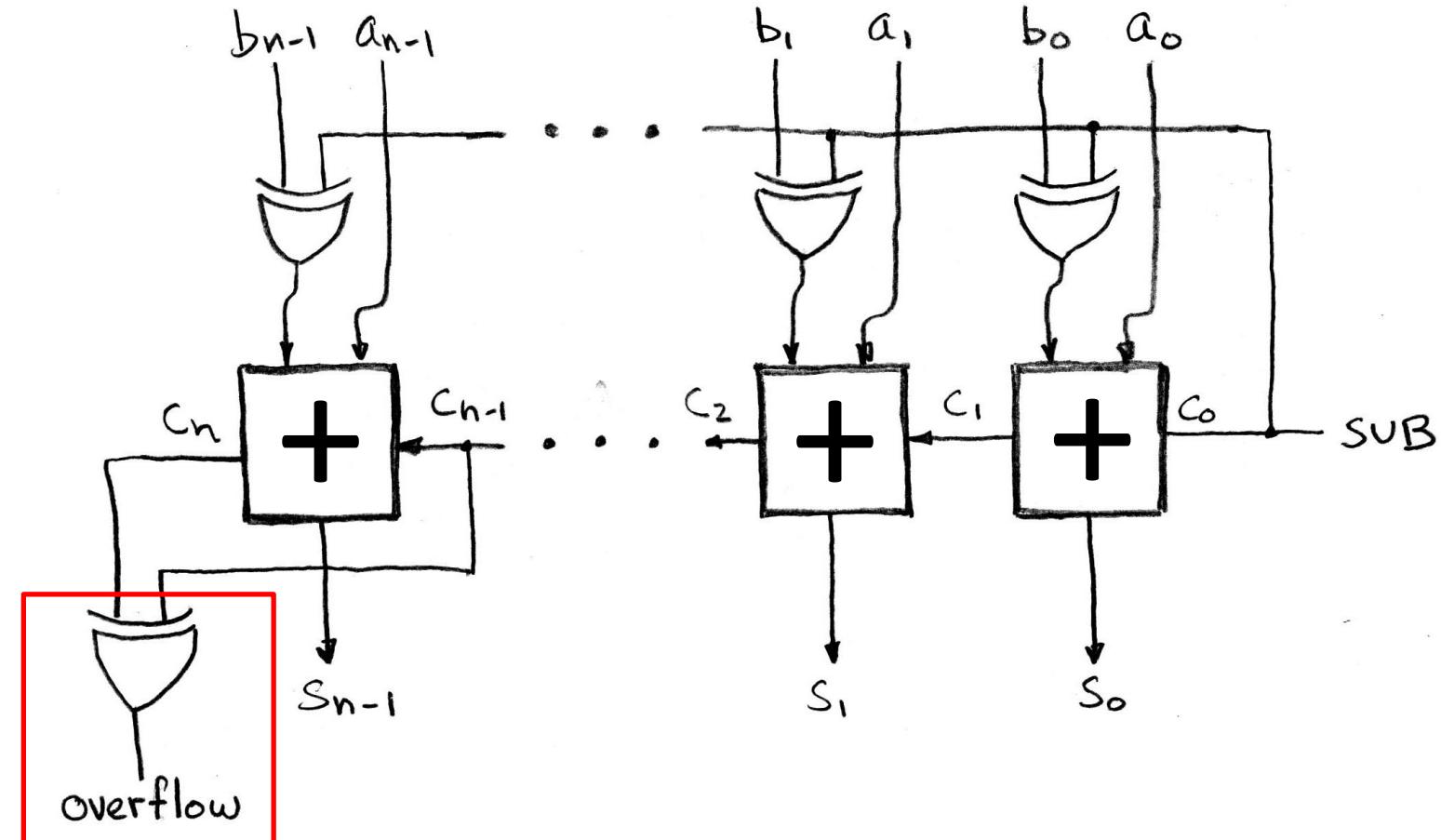
Two's

$$\begin{array}{r} 0101 \quad +5 \\ + 0010 \quad +2 \\ \hline \end{array}$$

Two's

$$\begin{array}{r} 1100 \quad -4 \\ + 0100 \quad 4 \\ \hline \end{array}$$

Multi-bit Adder/Subtractor with Overflow



Add/Sub in Verilog (parameterized)

#define
template<>

- ❖ Variable-width add/sub (with overflow, carry)

```
module addN #(parameter N=32) (OF, CF, S, sub, A, B);
  output logic OF, CF;
  output logic [N-1:0] S;
  input logic sub;
  input logic [N-1:0] A, B;
  logic [N-1:0] D; // possibly flipped B
  logic C2; // second-to-last carry-out

  always_comb begin
    D = B ^ {N{sub}}; // replication operator
    {C2, S[N-2:0]} = A[N-2:0] + D[N-2:0] + sub;
    {CF, S[N-1]} = A[N-1] + D[N-1] + C2;
    OF = CF ^ C2;
  end
endmodule // addN
```

- Here using OF = overflow flag, CF = carry flag (from condition flags in x86-64 CPUs)

Add/Sub in Verilog (parameterized)

```
module addN_tb ();
    logic sub;
    logic [N-1:0] A, B;
    logic OF, CF;
    logic [N-1:0] S;
    addN #(N(4)) dut (.OF, .CF, .S, .sub, .A, .B);
    initial begin
        #100; sub = 0; A = 4'b0101; B = 4'b0010; // 5 + 2
        #100; sub = 0; A = 4'b1101; B = 4'b1011; // -3 + -5
        #100; sub = 0; A = 4'b0101; B = 4'b0011; // 5 + 3
        #100; sub = 0; A = 4'b1001; B = 4'b1110; // -7 + -2
        #100; sub = 1; A = 4'b0101; B = 4'b1110; // 5 -(-2)
        #100; sub = 1; A = 4'b1101; B = 4'b0101; // -3 - 5
        #100; sub = 1; A = 4'b0101; B = 4'b1101; // 5 -(-3)
        #100; sub = 1; A = 4'b1001; B = 4'b0010; // -7 - 2
        #100;
    end
endmodule // addN_tb
```

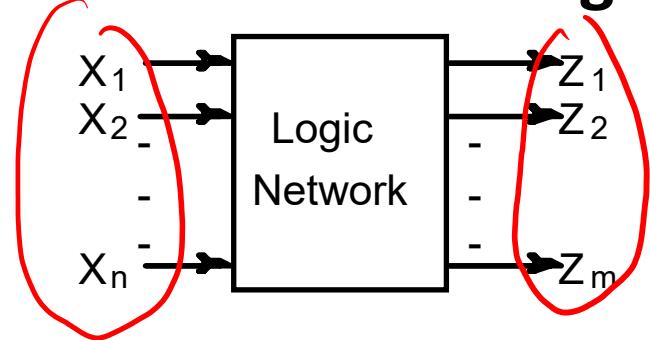
Miso Moment

Lecture Outline

- ❖ Multiplexors
- ❖ Adders
- ❖ **Sequential Logic in theory**
- ❖ Sequential Logic in Verilog

Synchronous Digital Systems (SDS)

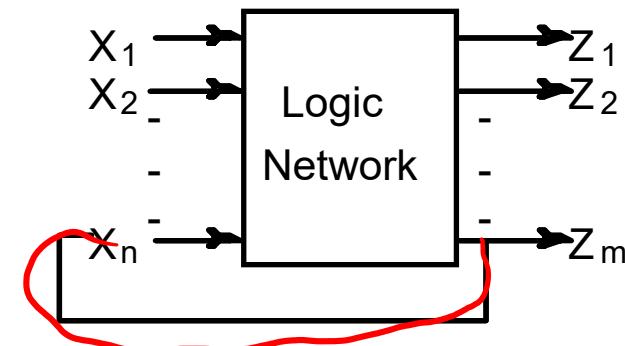
❖ Combinational Logic (CL)



Network of logic gates without feedback.

Outputs are functions only of inputs.

❖ Sequential Logic (SL)



The presence of feedback introduces the notion of “state.”

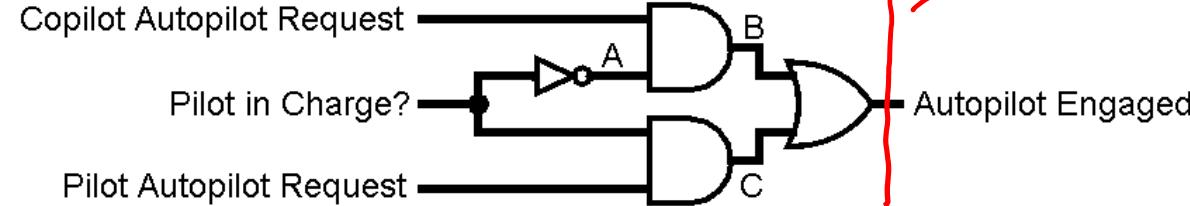
Circuits can “remember” or store information.

Uses for Sequential Logic

- ❖ Place to store values for some amount of time:
 - Registers
 - Memory
- ❖ *Help control flow of information between combinational logic blocks*
 - Hold up the movement of information to allow for orderly passage through CL

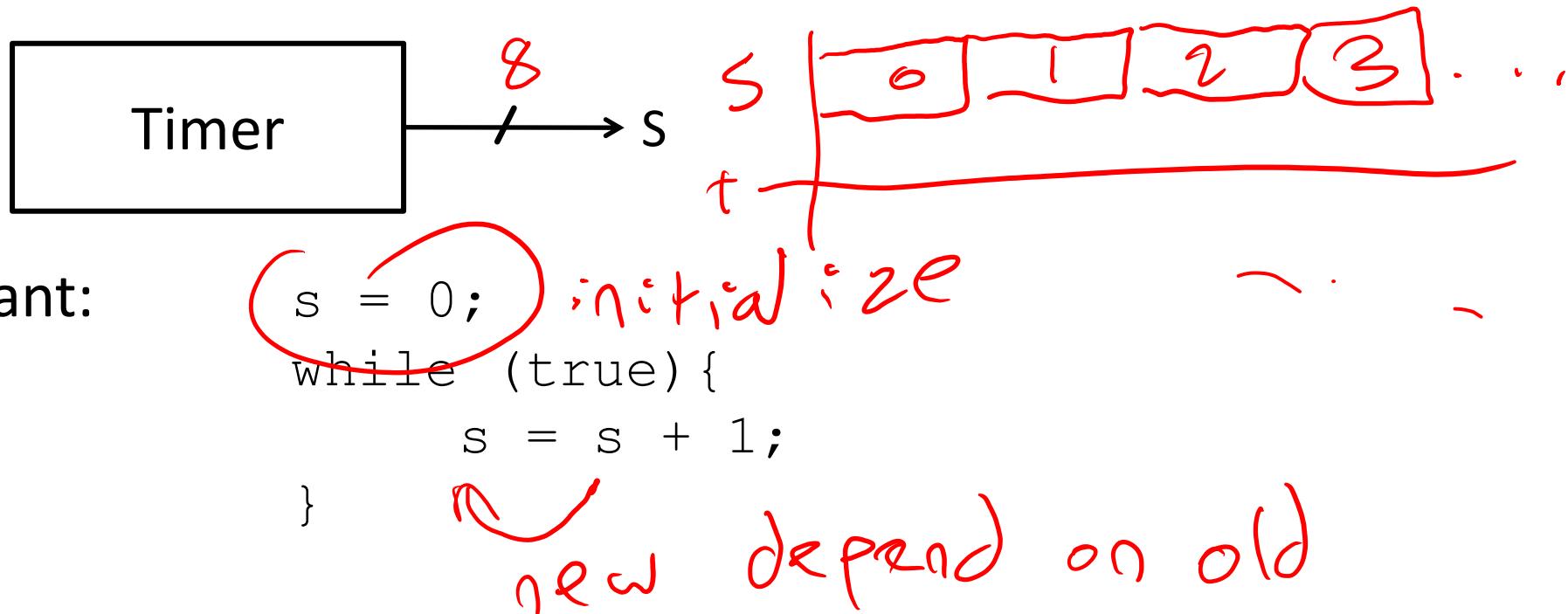
Control Flow of Information?

- ❖ Circuits can temporarily go to incorrect states!



Design example: Perpetual Timer

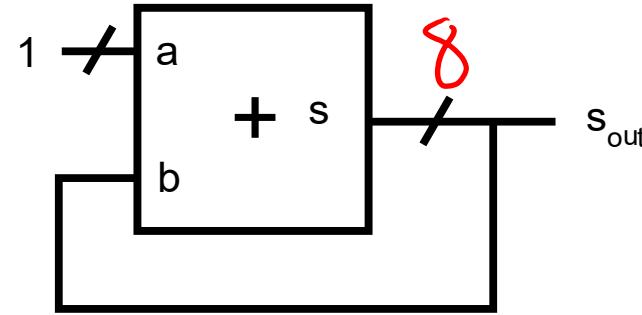
- ❖ A circuit that counts up from 0 over time
 - ❖ When time is up, stops counting and beeps incessantly
 - ❖ Needs to “remember” previous value to calculate next value



Timer: First Try

Does this work?

No

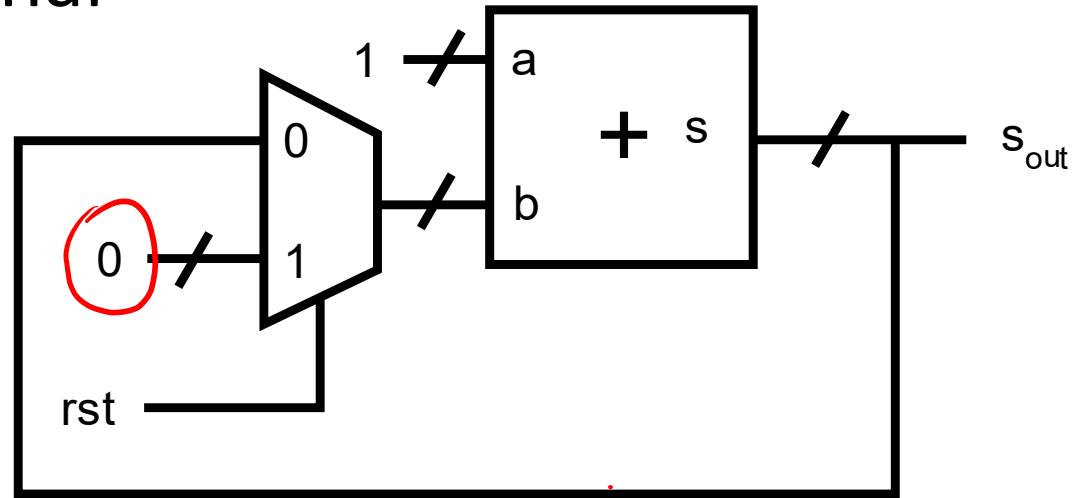


- 1) How do we say: 'S=0'?
- 2) How to control the next iteration of the 'for' loop?

Timer: Second Try

We'll add a “reset” signal
Does this work?

Still No!

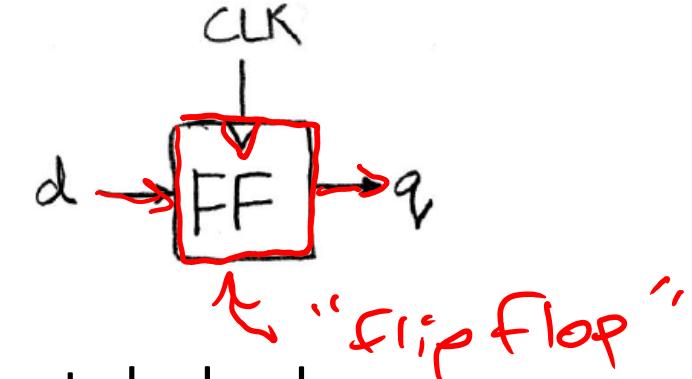
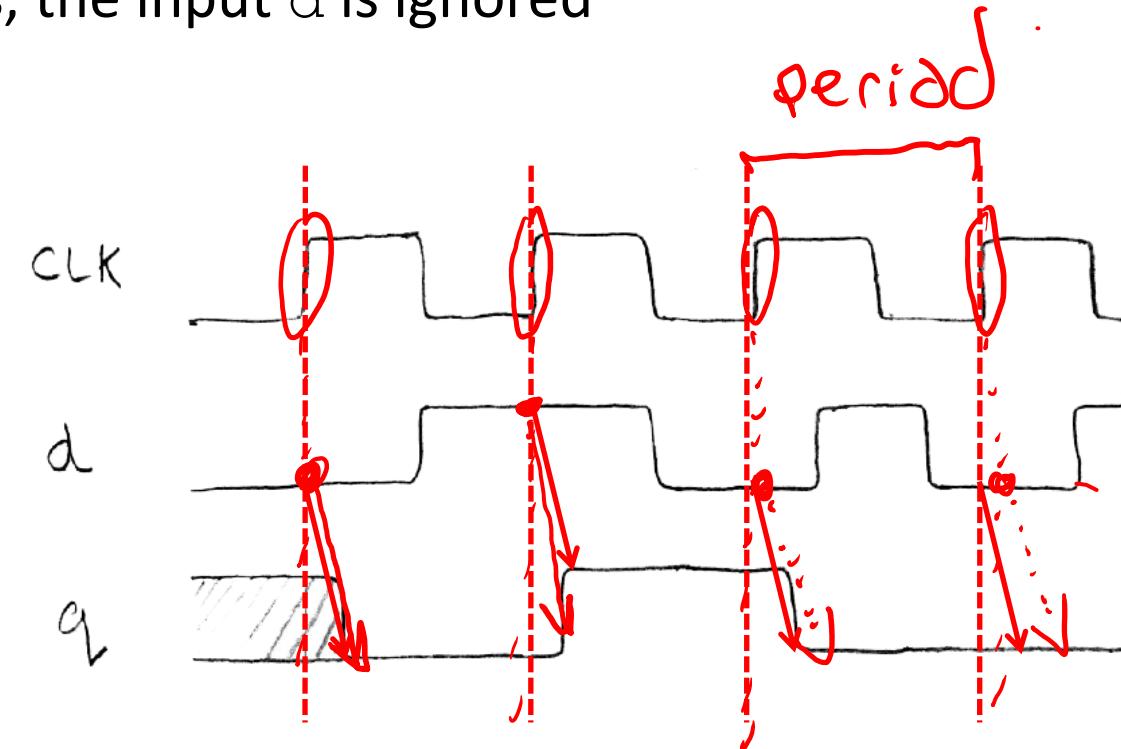


How to control the next iteration of the ‘for’ loop?

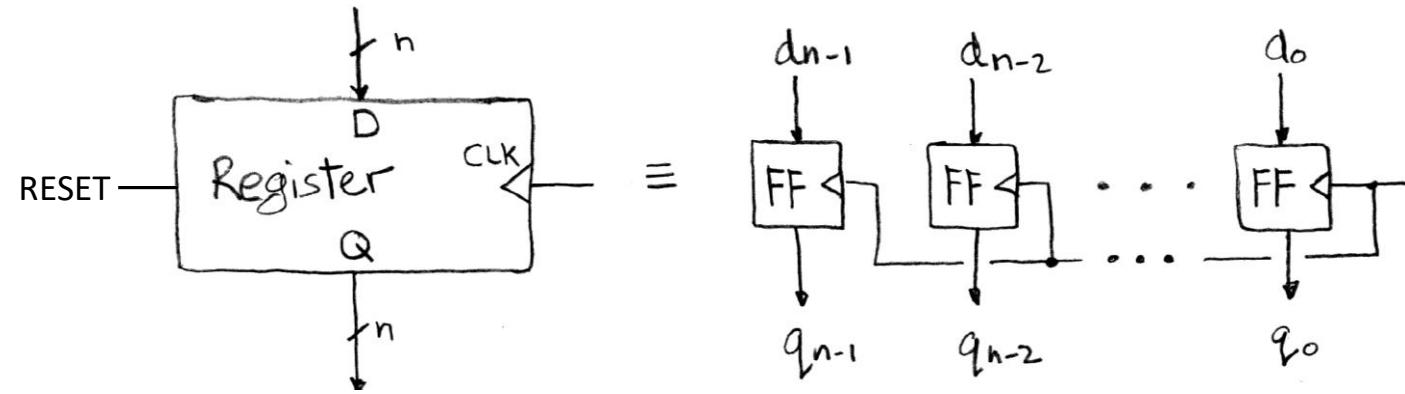
State Element: Flip-Flop

- Positive edge-triggered D-type flip flop

- On the rising edge of the clock ($0 \uparrow 1$), input d is **sampled** and held as the output “ q ” until the next clock edge
- All other times, the input d is ignored



State Element: Register

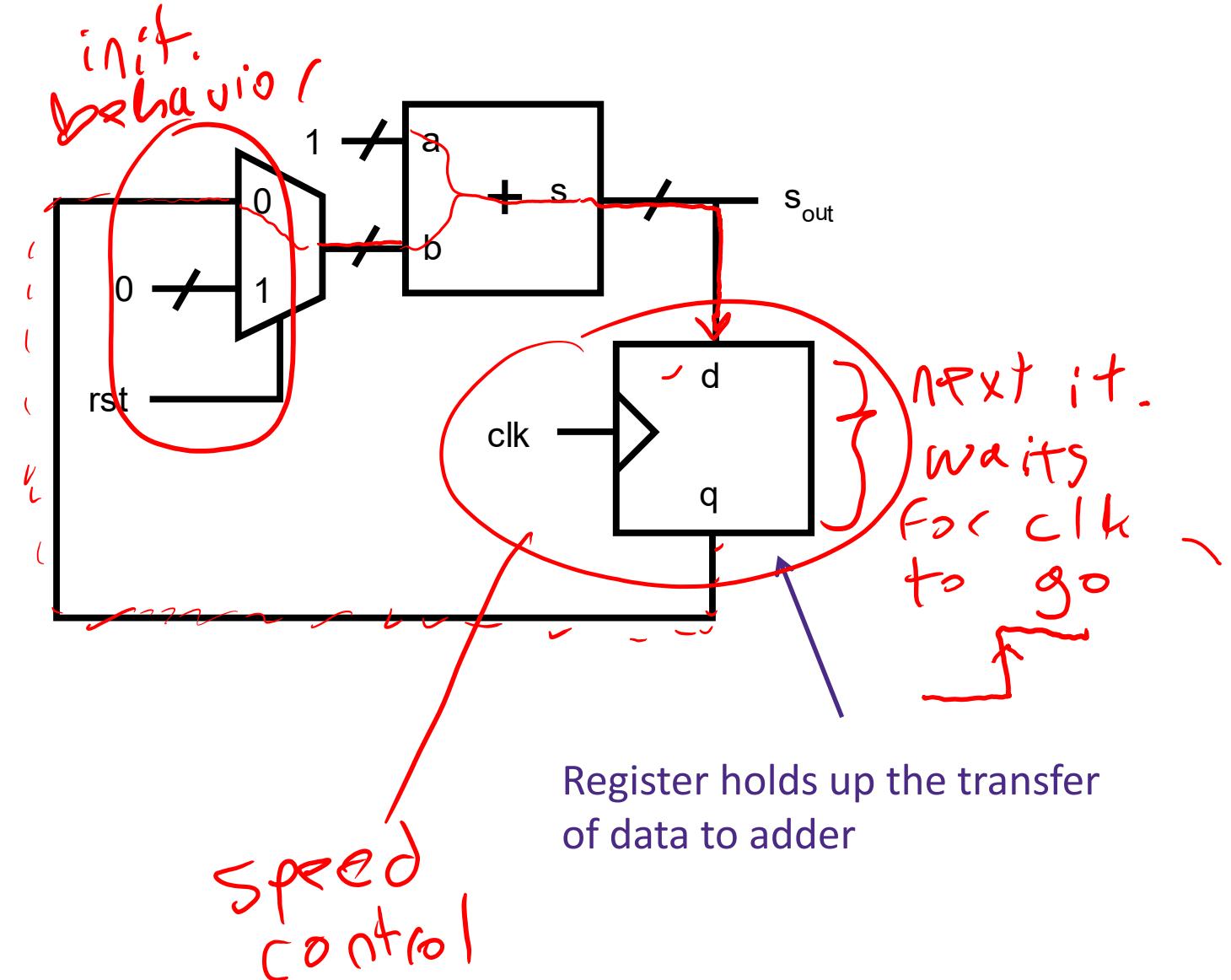


- ❖ n instances of flip-flops together
 - One for every bit in input/output bus width
- ❖ Optional synchronous RESET input
 - Forces Q to 0 when asserted
 - Just shorthand for adding a mux to the FF's input

Timer: Third try

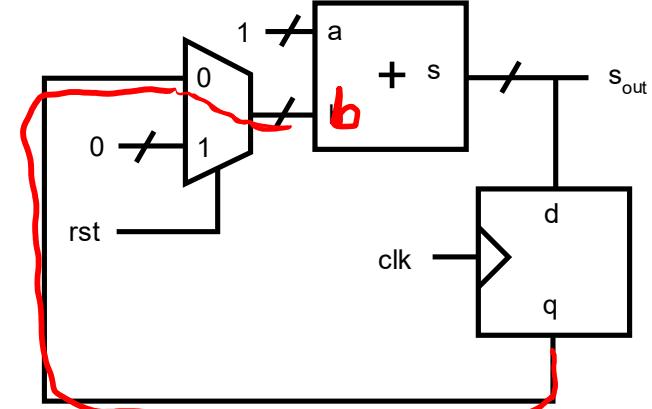
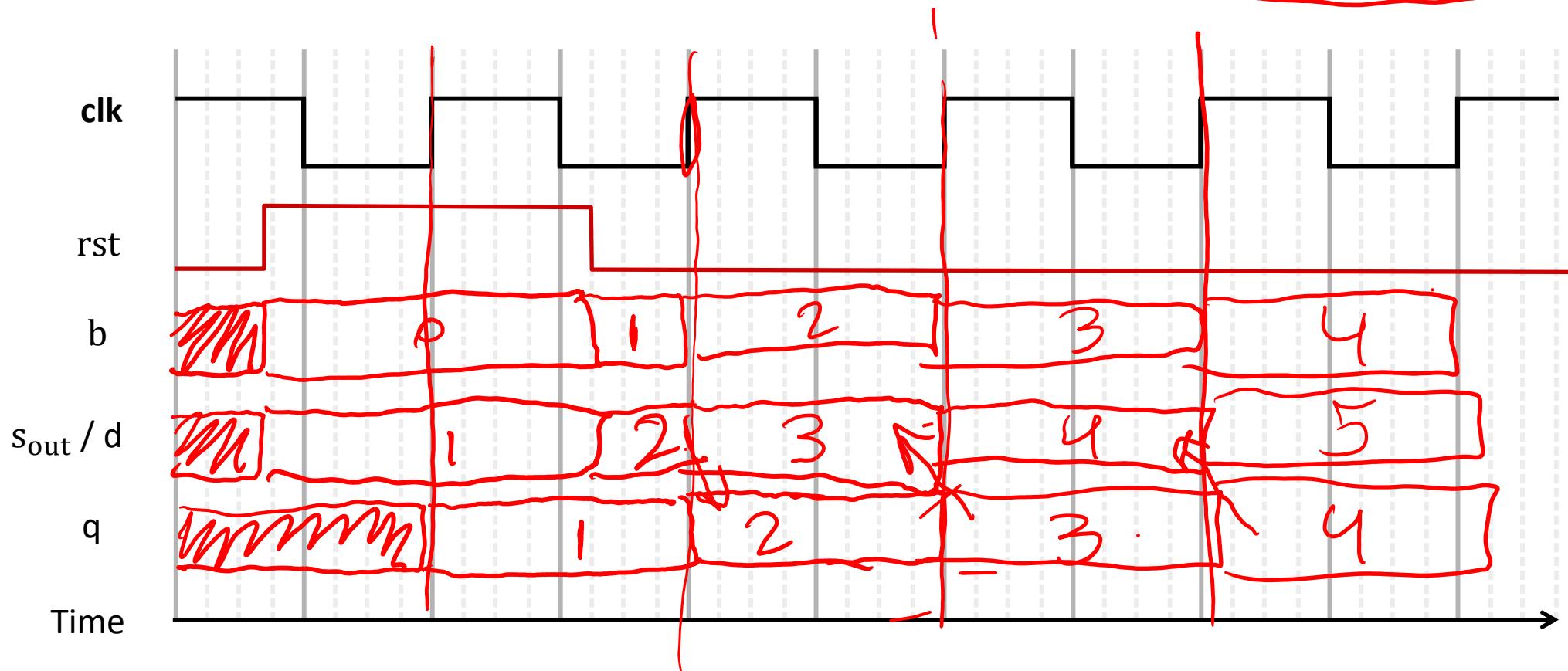
We happy?

We happy :3



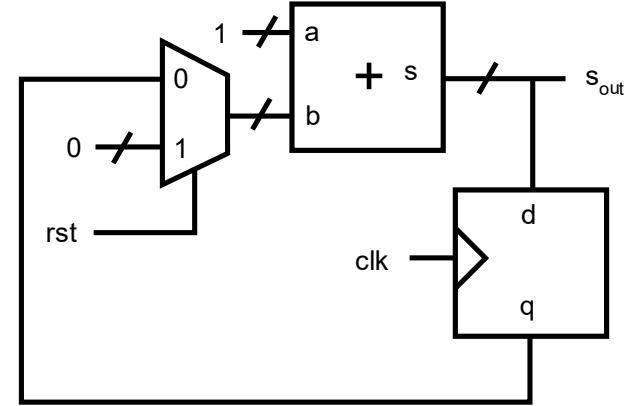
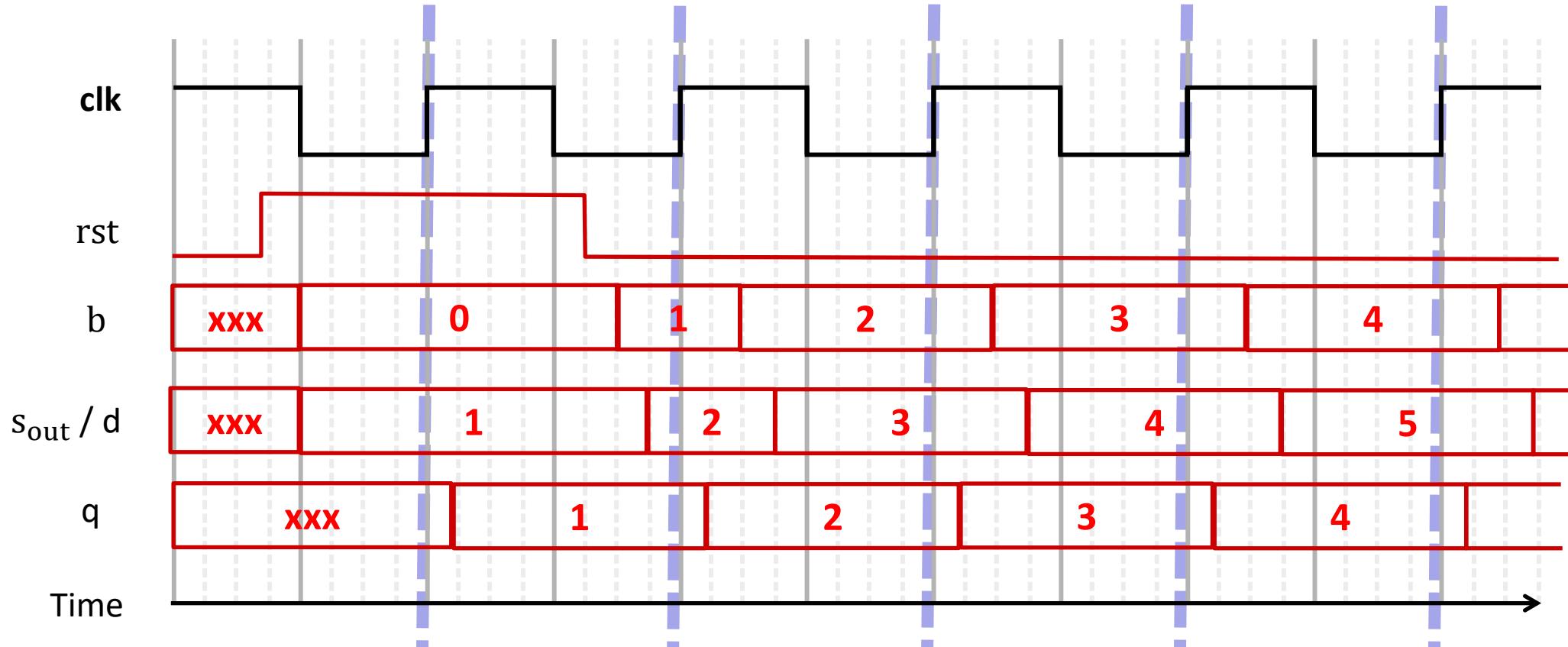
Synchronous waveforms

Start by assuming no propagation delays



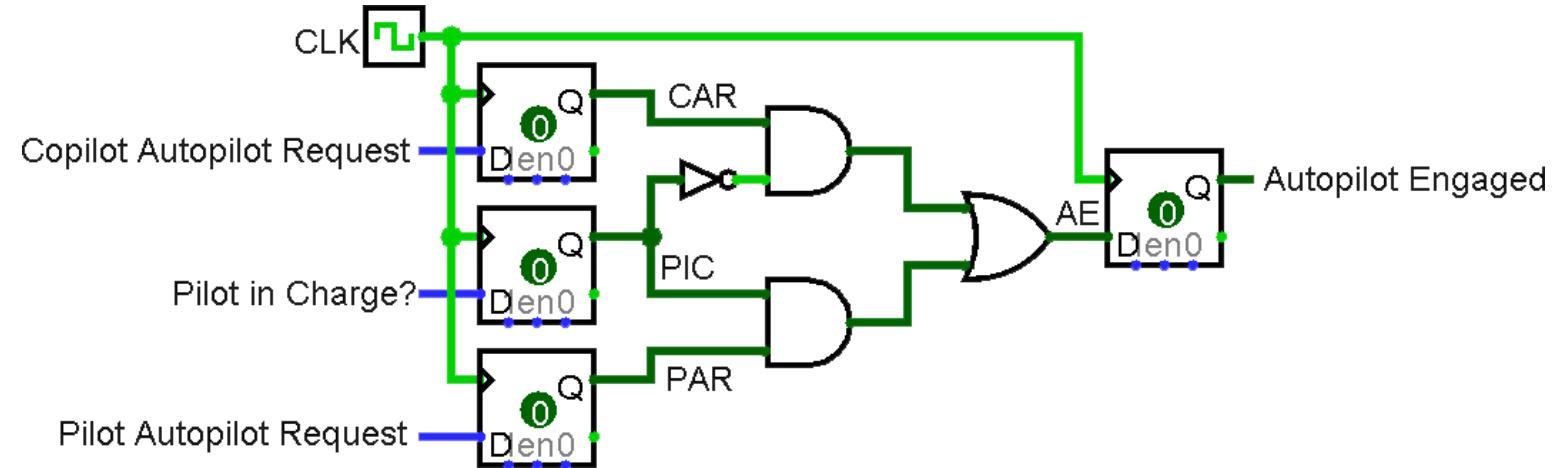
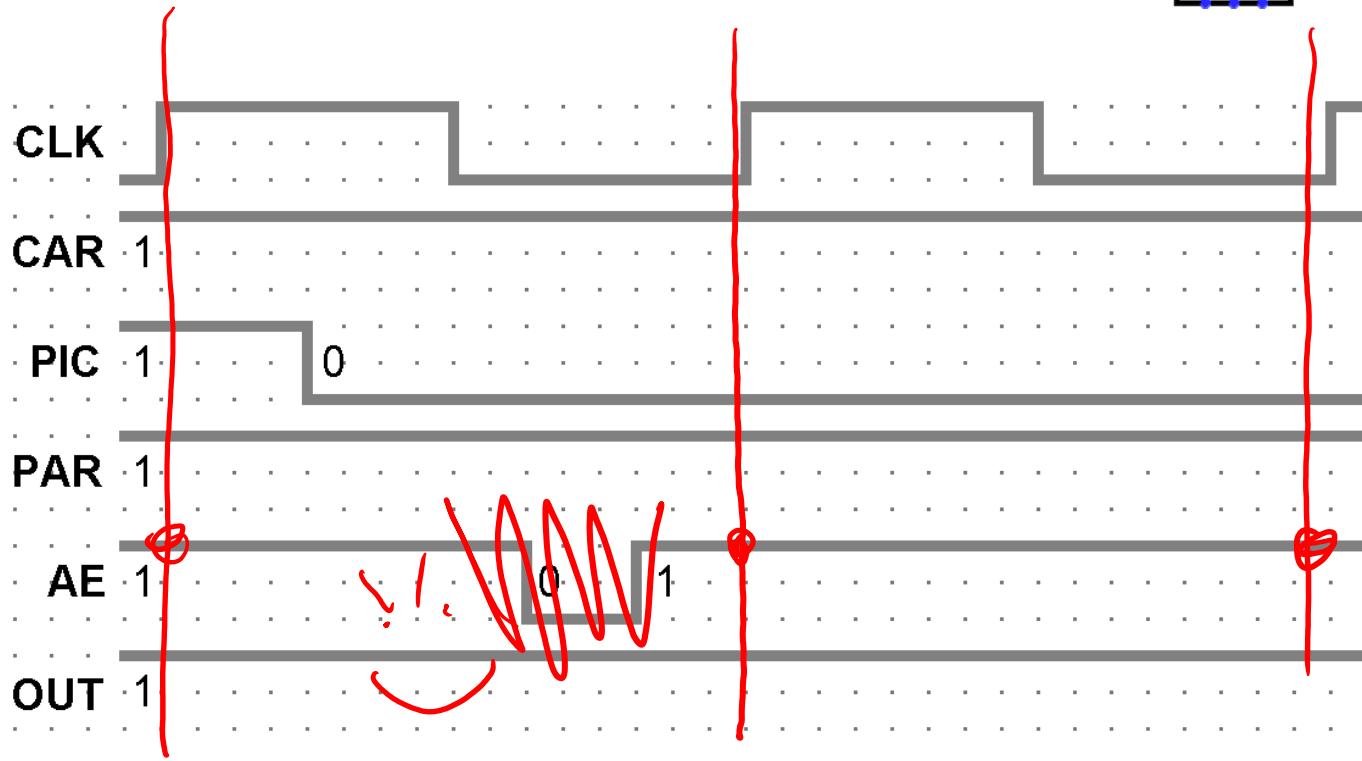
Synchronous waveforms

Now a propagation delay of 3ns
(1 tick) per block



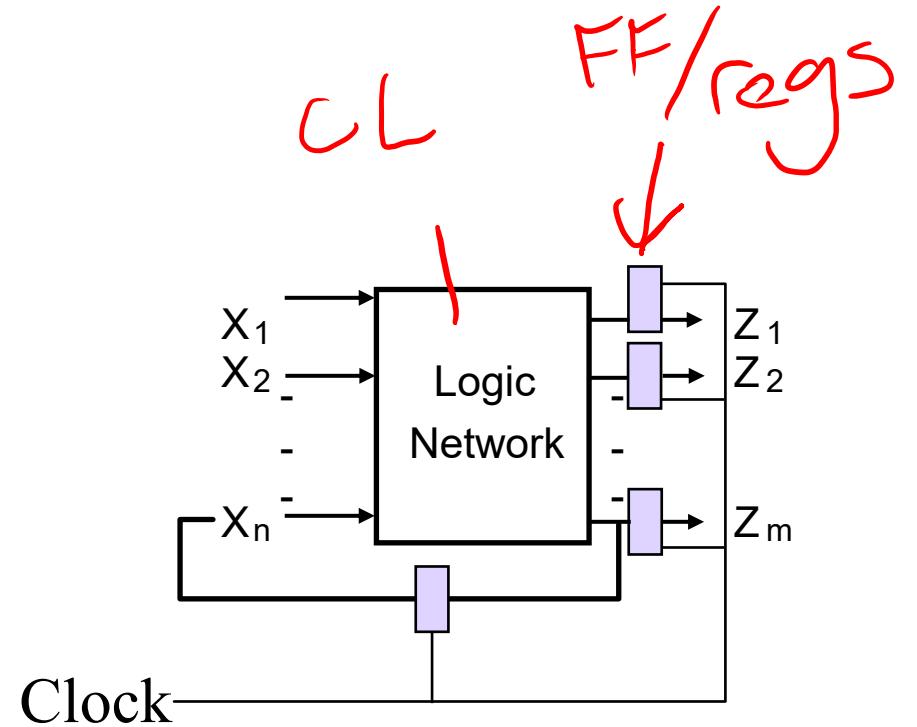
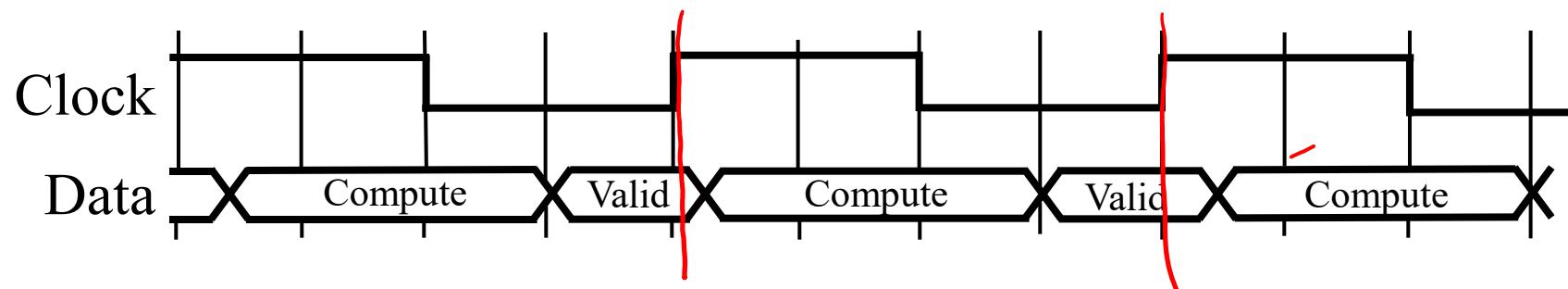
Autopilot Revisited

- ❖ Flip-flops “filter out” circuit hazards!



Safe Sequential Circuits

- ❖ Clocked elements on feedback, perhaps outputs
 - Clock signal synchronizes operation
 - Clocked elements hide glitches/hazards
 - Output can wiggle with hazards as much as it wants as long as it's **stable around the positive clock edge**
 - More on this in a few weeks ;)



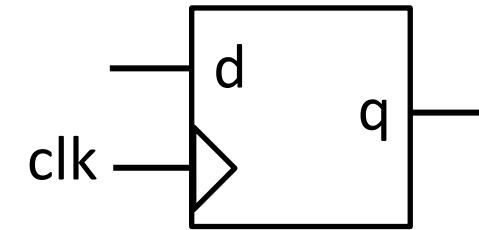
Lecture Outline

- ❖ Multiplexors
- ❖ Adders
- ❖ Sequential Logic in theory
- ❖ **Sequential Logic in Verilog**

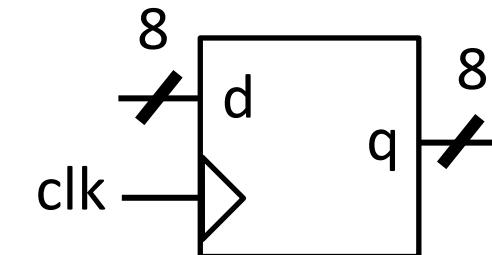
Verilog: Basic D Flip-Flop, Register

```
module basic_D_FF (q, d, clk);
    output logic q; // q is state-holding
    input logic d, clk;
    always_ff @ (posedge clk)
        q <= d; // use <= for clocked elements
endmodule
```

sensitivity list



```
module basic_reg (q, d, clk);
    output logic [7:0] q;
    input logic [7:0] d;
    input logic clk;
    always_ff @ (posedge clk)
        q <= d;
endmodule
```

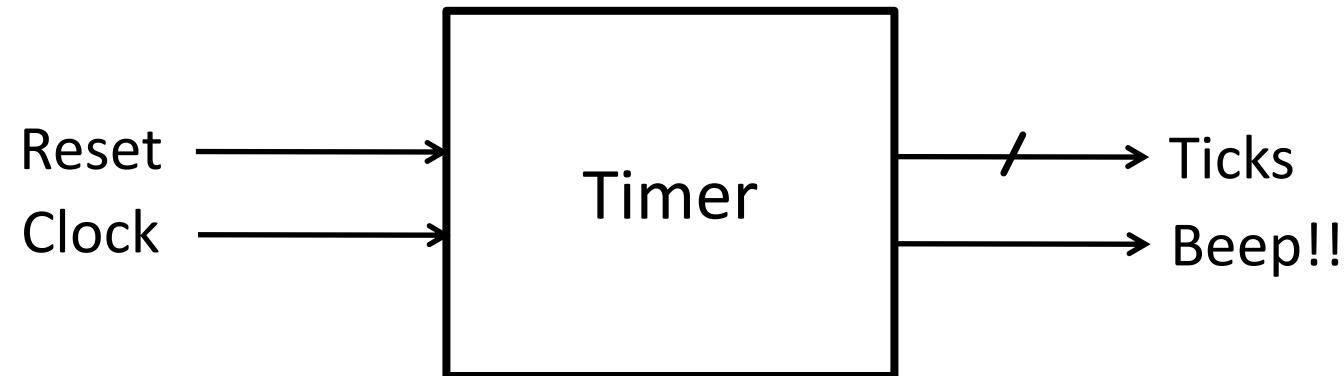


Reminder: “always_comb” blocks

- ❖ Verilog requires us to wrap control flow statements in an **always_comb** block
 - Block defines the full set of circuits that *may* drive the value on a `logic` variable
 - Idea: the last assignment in an always block to a given variable is the result that gets used
- ❖ But I promised there were more species of “**always**” block...

Exercise for the reader: Advanced Timer

- ❖ Draw a circuit diagram for a block that counts up from 0 to parameter N
 - ❖ Very similar to our “perpetual timer” example, but it’ll need another mux and a block to compare if two numbers are equal
 - ❖ Can use a black box for the comparator
 - ❖ (but you know enough to design that too, if you wanted to 😊)



Summary (1/2)

- ❖ Multiplexors switch signals to the output
 - Illustrated in block diagrams as trapezoids with labelled inputs and a select signal
- ❖ Binary addition and subtraction can be performed with chained full adders
 - Two's complement allows us to use the same hardware
 - We can detect signed overflow by XORing the carry-in and carry-out of the sign bit

Summary (2/2)

- ❖ State elements controlled by clock
 - Store information
 - Control the flow of information between other state elements and combinational logic
- ❖ Registers implemented from flip-flops
 - Triggered by CLK, pass input to output, can reset