
CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Intro to Digital Design
L4: Combinational Building Blocks 
& Sequential Logic
Instructor: Naomi Alterman

Teaching Assistants:

Derek de Leuw Isabel Froelich

Kevin Hernandez Sathvik Kanuri

Aadithya Manoj



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Administrivia

❖ Lab 3 Demos due during your assigned demo slots

▪ Don’t forget to submit your lab materials before Wednesday at 2:30 pm, 
regardless of your demo time

▪ Come to lab with your reports open and bitfiles ready to load up

❖ Lab 4 – 7-segment displays

❖ Quiz 1 is next week in lecture

▪ Last 20 minutes, worth 10% of your course grade

▪ On Lectures 1-3:  CL, K-maps, Waveforms, and Verilog

▪ Past Quiz 1 (+ solutions) on website:  Course Info → Quizzes

2



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Lecture Outline

❖ Multiplexors

❖ Adders

❖ Sequential Logic in theory

❖ Sequential Logic in Verilog

3



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Data Multiplexor

❖ Multiplexor (“MUX”) is a selector

▪ Use an 𝑠-bit “select signal” to direct one of 2s 
𝑛-bit wide inputs to output

▪ Called a 𝑛-bit, N-to-1 MUX

❖ Example:  𝑛-bit 2-to-1 MUX

▪ Input S (s bits wide) selects between two inputs of 𝑛 bits each

4

This input is passed to 
output if selector bits 
match shown valueN inputs



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Review:  Implementing a 1-bit 2-to-1 MUX 

❖ Schematic:

❖ Truth Table:

❖ Boolean Algebra:

❖ Circuit Diagram:

5

s a b c

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

1-bit 4-to-1 MUX

❖ Schematic:

❖ Truth Table:  How many rows?

❖ Boolean Expression:  
 𝑒 = ഥ𝑠1 ഥ𝑠0𝑎 + ഥ𝑠1𝑠0𝑏 + 𝑠1 ഥ𝑠0𝑐 + 𝑠1𝑠0𝑑

6



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

1-bit 4-to-1 MUX

❖ Can we leverage what we’ve previously built?

▪ Alternative hierarchical approach:

7



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Multiplexers in General Logic

❖ Implement F = XഥYZ + YതZ with a 8:1 MUX

8

S2
S1
S0

0

7

1

2

3

4

5

6

F
8:1

MUX



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Lecture Outline

❖ Multiplexors

❖ Adders

❖ Sequential Logic in theory

❖ Sequential Logic in Verilog

9



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Review:  Unsigned Integers

❖ Unsigned values follow the standard base 2 system

▪ b7b6b5b4b3b2b1b0 = b727 + b626 + ⋯ + b121 + b020

❖ In 𝑛 bits, represent integers 0 to 2𝑛-1

❖ Add and subtract using the “carry” and “borrow” rules, just in binary

10

00111111
+00001000
 01000111

63
+ 8
 71

01000000
-00001000
 00111000

64
- 8
 56



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Review:  Two’s Complement (Signed)

❖ Properties:

▪ In 𝑛 bits, represent integers −2𝑛−1 to 2𝑛−1 − 1

▪ Positive number encodings match 
unsigned numbers

▪ Single zero (encoding = all zeros)

❖ Negation procedure:

▪ Take the bitwise complement 
and then add one
( ~x + 1 == -x )

11

bw−1 has weight −2w−1, other bits have usual weights +2i

. . . b0bw-1 bw-2

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Two’s
Complement



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Addition and Subtraction in Hardware

❖ The same bit manipulations work for both unsigned and two’s 
complement numbers!

▪ Perform subtraction via adding the negated 2nd operand:
A − B = A + −B = A + ~B + 1 

❖ 4-bit examples:

12

Two’s Un

0 0 1 0 +2 2
+ 1 1 0 0 -4 12

Two’s Un

1 0 0 0 -8 8
+ 0 1 0 0 +4 4

0 1 1 0 +6 6
- 0 0 1 0 +2 2

1 1 1 1 -1 15
- 1 1 1 0 -2 14



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Half Adder (1 bit)

13

Carry-out bit
a0 b0 c1 s0
0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Carry = a0b0 

  Sum = 𝑎0 ⊕ b0



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Full Adder (1 bit)

14

Possible 
carry-in c1

ci ai bi ci+1 si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

𝒔𝒊 = XOR 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖  

𝒄𝒊+𝟏 = MAJ 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖  
𝒄𝒊+𝟏 = 𝑎𝑖𝑏𝑖 + 𝑎𝑖𝑐𝑖 + 𝑏𝑖𝑐𝑖  

Carry-outCarry-in



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Multi-Bit Adder (N bits)

❖ Chain 1-bit adders by connecting CarryOuti to CarryIni+1:

15

+ + +

b0



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

1-bit Adders in Verilog

❖ What’s wrong with this?

▪ Truncation!

❖ Fixed:

▪ Use of {sig, …, sig} for 
concatenation

16

module halfadd1 (s, a, b);
  output logic s;
  input  logic a, b;

  always_comb begin
    s = a + b;
  end
endmodule

module halfadd2 (c, s, a, b);
  output logic c, s;
  input  logic a, b;
 
  always_comb begin
    {c, s} = a + b;
  end
endmodule



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Ripple-Carry Adder in Verilog

❖ Chain full adders?

17

module fulladd (cout, s, cin, a, b);
  output logic cout, s;
  input  logic cin, a, b;
 
  always_comb begin
    {cout, s} = cin + a + b;
  end
endmodule

module add2 (cout, s, cin, a, b);
  output logic cout; output logic [1:0] s;
  input  logic cin;  input  logic [1:0] a, b;
  logic  c1;
  
  fulladd b1 (cout, s[1], c1,  a[1], b[1]);
  fulladd b0 (c1,   s[0], cin, a[0], b[0]);
endmodule



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Subtraction?

❖ Can we use our multi-bit adder to do subtraction?

▪ Flip the bits and add 1? 
• X ⊕ 1 = ഥX

• CarryIn0 (using full adder in all positions)

18

+ + +

b0



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Multi-bit Adder/Subtractor

19

𝑥 ⊕ 1 = ҧ𝑥 
(flips the bits)

This signal is only
high when you
perform subtraction

Add 1

+ + +



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Detecting Arithmetic Overflow

❖ Overflow:  When a calculation produces a result that can’t be 
represented in the current encoding scheme

▪ Integer range limited by fixed width

▪ Can occur in both the positive and negative directions

❖ Unsigned Overflow

▪ Result of add/sub is > UMax or < Umin

❖ Signed Overflow

▪ Result of add/sub is > TMax or < TMin

▪ (+) + (+) = (−)  or  (−) + (−) = (+)

20



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Signed Overflow Examples

21

Two’s

0 1 0 1 +5
+ 0 0 1 1 +3

Two’s

1 0 0 1 -7
+ 1 1 1 0 -2

Two’s

0 1 0 1 +5
+ 0 0 1 0 +2

Two’s

1 1 0 0 -4
+ 0 1 0 0 4



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Multi-bit Adder/Subtractor with Overflow

22

+ + +



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Add/Sub in Verilog (parameterized)

❖ Variable-width add/sub (with overflow, carry)

▪ Here using OF = overflow flag, CF = carry flag (from condition flags in x86-64 CPUs)

23

module addN #(parameter N=32) (OF, CF, S, sub, A, B);
  output logic         OF, CF;
  output logic [N-1:0] S;
  input  logic         sub;  
  input  logic [N-1:0] A, B;
  logic  [N-1:0] D;    // possibly flipped B
  logic          C2;   // second-to-last carry-out
  
  always_comb begin
    D = B ^ {N{sub}};  // replication operator
   {C2, S[N-2:0]} = A[N-2:0] + D[N-2:0] + sub;
    {CF, S[N-1]} = A[N-1] + D[N-1] + C2;
    OF = CF ^ C2;
  end
endmodule  // addN



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Add/Sub in Verilog (parameterized)

24

module addN_tb ();
  logic         sub;
  logic [N-1:0] A, B;
  logic         OF, CF;
  logic [N-1:0] S;
 
  addN #(.N(4)) dut (.OF, .CF, .S, .sub, .A, .B);
 
  initial begin
    #100;  sub = 0;  A = 4'b0101;  B = 4'b0010;  //  5 +  2
    #100;  sub = 0;  A = 4'b1101;  B = 4'b1011;  // -3 + -5
    #100;  sub = 0;  A = 4'b0101;  B = 4'b0011;  //  5 +  3
    #100;  sub = 0;  A = 4'b1001;  B = 4'b1110;  // -7 + -2
    #100;  sub = 1;  A = 4'b0101;  B = 4'b1110;  //  5 -(-2)
    #100;  sub = 1;  A = 4'b1101;  B = 4'b0101;  // -3 -  5
    #100;  sub = 1;  A = 4'b0101;  B = 4'b1101;  //  5 -(-3)
    #100;  sub = 1;  A = 4'b1001;  B = 4'b0010;  // -7 -  2
    #100;
  end
endmodule  // addN_tb



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Miso Moment

25



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Lecture Outline

❖ Multiplexors

❖ Adders

❖ Sequential Logic in theory

❖ Sequential Logic in Verilog

26



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Synchronous Digital Systems (SDS)

❖ Sequential Logic (SL)

The presence of feedback 
introduces the notion of “state.”

Circuits can “remember” or store 
information.

27

❖ Combinational Logic (CL)

Network of logic gates without 
feedback.

Outputs are functions only of 
inputs.

-

-
-

X1

X2

Xn

Logic

Network

Z 1

Z 2

Z m

-

-
-

-

-
-

X1

X2

Xn

Logic

Network

Z 1

Z 2

Z m

-

-
-



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Uses for Sequential Logic

❖ Place to store values for some amount of time:

▪ Registers

▪ Memory

❖ Help control flow of information between combinational logic 
blocks

▪ Hold up the movement of information to allow for orderly passage 
through CL

28



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Control Flow of Information?

❖ Circuits can temporarily go to incorrect states!

29



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

❖ Want:  s = 0;

       while (true){ 

            s = s + 1;

   }

❖ A circuit that counts up from 0 over time
❖ When time is up, stops counting and beeps incessantly
❖ Needs to “remember” previous value to calculate next value

Design example: Perpetual Timer

30

Timer S



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Does this work?

No

1) How do we say: ‘S=0’?
2) How to control the next iteration 

of the ‘for’ loop?

Timer:  First Try

31

 
 

   
   

 

 



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

We’ll add a “reset” signal
Does this work?

Still No!

How to control the next iteration of 
the ‘for’ loop?

Timer:  Second Try

32

 
 

   
   

 

 

   

 

  

 

 



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

State Element:  Flip-Flop

❖ Positive edge-triggered D-type flip flop

▪ On the rising edge of the clock (           )), 
input d is sampled and held as the output “q” until the next clock edge

▪ All other times, the input d is ignored

33



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

State Element:  Register

❖ 𝑛 instances of flip-flops together

▪ One for every bit in input/output bus width

❖ Optional synchronous RESET input

▪ Forces Q to 0 when asserted

▪ Just shorthand for adding a mux to the FF’s input

34

RESET



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Timer: Third try

35

Register holds up the transfer 
of data to adder

 
 

   
   

   

 

 

   

 

  

 

 

 

 

We happy?

We happy :3We happy :3



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Synchronous waveforms

36

 
 

   
   

   

 

 

   

 

  

 

 

 

 

Time

clk

sout / d

rst

b

q

Start by assuming no propagation delays



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Synchronous waveforms

37

 
 

   
   

   

 

 

   

 

  

 

 

 

 

Time

clk

sout / d

rst

b xxx 0

xxx 1

q xxx 1

1

2

2 3 4

2 3 4

3 4 5

Now a propagation delay of 3ns 

(1 tick) per block



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Autopilot Revisited

❖ Flip-flops “filter out” 
circuit hazards!

38



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Safe Sequential Circuits

❖ Clocked elements on feedback, 
perhaps outputs

▪ Clock signal synchronizes operation

▪ Clocked elements hide glitches/hazards

▪ Output can wiggle with hazards as much as 
it wants as long as it’s stable around the 
positive clock edge
• More on this in a few weeks ;)

39

Clock

-

-
-

X1

X2

Xn

Logic

Network

Z 1

Z 2

Z m

-

-
-

Clock

Data Valid ComputeCompute Valid Compute



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Lecture Outline

❖ Multiplexors

❖ Adders

❖ Sequential Logic in theory

❖ Sequential Logic in Verilog

40



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

d
q

clk

Verilog:  Basic D Flip-Flop, Register

41

module basic_D_FF (q, d, clk);

  output logic q; // q is state-holding

  input  logic d, clk;

  always_ff @(posedge clk)

    q <= d; // use <= for clocked elements

endmodule

module basic_reg (q, d, clk);

  output logic [7:0] q;

  input  logic [7:0] d;

  input  logic       clk;

  always_ff @(posedge clk)

    q <= d;  

endmodule

d
q

clk

8
8



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Reminder: “always_comb” blocks

❖ Verilog requires us to wrap control flow statements in an 
always_comb block
▪ Block defines the full set of circuits that may drive the value on a logic variable

▪ Idea: the last assignment in an always block to a given variable is the result that 
gets used

❖ But I promised there were more species of “always” block…

42



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

❖ Draw a circuit diagram for a block that counts up from 0 to 
parameter N
❖ Very similar to our “perpetual timer” example, but it’ll need another 

mux and a block to compare if two numbers are equal
❖ Can use a black box for the comparator
❖ (but you know enough to design that too, if you wanted to )

Exercise for the reader: Advanced Timer

43

Timer
Ticks

Beep!!

Reset

Clock



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Summary (1/2)

❖ Multiplexors switch signals to the output

▪ Illustrated in block diagrams as trapezoids with labelled inputs and a 
select signal

❖ Binary addition and subtraction can be performed with chained 
full adders 

▪ Two’s complement allows us to use the same hardware

▪ We can detect signed overflow by XORing the carry-in and carry-out of 
the sign bit

44



CSE369, Winter 2026L4:  Combinational Building Blocks & Sequential Logic

Summary (2/2)

❖ State elements controlled by clock

▪ Store information

▪ Control the flow of information between other state elements and combinational 
logic

❖ Registers implemented from flip-flops

▪ Triggered by CLK, pass input to output, can reset

45


	Slide 1: Intro to Digital Design L4: Combinational Building Blocks & Sequential Logic
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Data Multiplexor
	Slide 5: Review:  Implementing a 1-bit 2-to-1 MUX 
	Slide 6: 1-bit 4-to-1 MUX
	Slide 7: 1-bit 4-to-1 MUX
	Slide 8: Multiplexers in General Logic
	Slide 9: Lecture Outline
	Slide 10: Review:  Unsigned Integers
	Slide 11: Review:  Two’s Complement (Signed)
	Slide 12: Addition and Subtraction in Hardware
	Slide 13: Half Adder (1 bit)
	Slide 14: Full Adder (1 bit)
	Slide 15: Multi-Bit Adder (N bits)
	Slide 16: 1-bit Adders in Verilog
	Slide 17: Ripple-Carry Adder in Verilog
	Slide 18: Subtraction?
	Slide 19: Multi-bit Adder/Subtractor
	Slide 20: Detecting Arithmetic Overflow
	Slide 21: Signed Overflow Examples
	Slide 22: Multi-bit Adder/Subtractor with Overflow
	Slide 23: Add/Sub in Verilog (parameterized)
	Slide 24: Add/Sub in Verilog (parameterized)
	Slide 25
	Slide 26: Lecture Outline
	Slide 27: Synchronous Digital Systems (SDS)
	Slide 28: Uses for Sequential Logic
	Slide 29: Control Flow of Information?
	Slide 30: Design example: Perpetual Timer
	Slide 31: Timer:  First Try
	Slide 32: Timer:  Second Try
	Slide 33: State Element:  Flip-Flop
	Slide 34: State Element:  Register
	Slide 35: Timer: Third try
	Slide 36: Synchronous waveforms
	Slide 37: Synchronous waveforms
	Slide 38: Autopilot Revisited
	Slide 39: Safe Sequential Circuits
	Slide 40: Lecture Outline
	Slide 41: Verilog:  Basic D Flip-Flop, Register
	Slide 42: Reminder: “always_comb” blocks
	Slide 43: Exercise for the reader: Advanced Timer
	Slide 44: Summary (1/2)
	Slide 45: Summary (2/2)

