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Administrivia

+» Lab 3 Demos due during your assigned demo slots

"= Don’t forget to submit your lab materials before Wednesday at 2:30 pm,
regardless of your demo time

" Come to lab with your reports open and bitfiles ready to load up
+» Lab 4 — 7-segment displays

% Quiz 1 is next week in lecture
= Last 20 minutes, worth 10% of your course grade
" On Lectures 1-3: CL, K-maps, Waveforms, and Verilog
= Past Quiz 1 (+ solutions) on website: Course Info — Quizzes

CSE369, Winter 2026
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Lecture Outline

» Multiplexors

+~ Adders

» Sequential Logic in theory
» Sequential Logic in Verilog
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Data Multiplexor

L4: Combinational Building Blocks & Sequential Logic

+» Multiplexor (“MUX") is a selector

CSE369, Winter 2026

= Use an s-bit “select signal” to direct one of 25 n-bit wide inputs to output
" Called a n-bit, N-to-1 MUX

« Example: n-bit 2-to-1 MUX

" |Input S (s bits wide) selects between two inputs of n bits each

N inputs —

o

C

— This input is passed to

output if selector bits
match shown value
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Review: Implementing a 1-bit 2-to-1 MUX

+ Schematic: o +~ Boolean Algebra:
-—-——-ﬂ — B B
- ¢ = Sab—+ sab + sab + sab
b ‘ = 5(ab+ ab) + s(ab + ab)
< =35(a(b+ b)) + s((a+ a)b)
= 5(a(1) + s((1)d)
| =35a + sb |
. s a b]c
+ Truth Table: — T
© 0 1|0
© 1 0]1
o 1 1)1
1 0 0fo
1 0 1|1
1 1 0fo
1 1 1|1
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1-bit 4-to-1 MUX

+» Schematic: a b c A

+» Truth Table: How many rows?

+ Boolean Expression:
e = 5150a + S1Sob + s1SgC + sy5pd



WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

1-bit 4-to-1 MUX

+» Can we leverage what we’ve previously built?

= Alternative hierarchical approach:
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Multiplexers in General Logic

» Implement F = XYZ + YZ with a 8:1 MUX

|
/

N0 b~ WDNR
(00
—_

L]
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Lecture Outline

» Multiplexors

» Adders

» Sequential Logic in theory
» Sequential Logic in Verilog
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Review: Unsigned Integers

+ Unsigned values follow the standard base 2 system
" b7b6b5b4b3b2b1b0 — b727 + b626 + -+ b121 + bOZO

+ In n bits, represent integers 0 to 2"-1

+» Add and subtract using the “carry” and “borrow” rules, just in binary

63 00111111 64 01000000

+_8 +00001000 -_8 -00001000
71 01000111 56 00111000
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Review: Two’s Complement (Signed)

b,,_1 has weight —2W~1, other bits have usual weights +2!
Z |

4 Y
w-2 ‘b bO

b b

w-1

+ Properties:

" |nn bits, represent integers —2""1 to 271 — 1 1111

1110
1101

1100

0000
0001
0010

0011

= Positive number encodings match
unsigned numbers

= Single zero (encoding = all zeros) Two’s

_g\1011  Complement 100
1010 0101

+» Negation procedure:

= Take the bitwise complement -6\ 1001 0110
and then add one 1000 0111
(~x + 1 == -x ) -8 +7

11
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Addition and Subtraction in Hardware

+» The same bit manipulations work for both unsigned and two’s
complement numbers!

= Perform subtraction via adding the negated 2"9 operand:
A—-B=A+(-B)=A+(~B)+1

+ 4-bit examples: Two’s Un Two’s Un
O010 +2 2 1000 -8 8

+1100 -4 12 +0100 +4 4

110 +6 6 1111 -1 15

-0010 +2 2 -1110 -2 14

12
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L4: Combinationa

Half Adder (1 bit)

d3 dg 4j | 40
+ by by by |bg
S3 S22 S1 | So
Carry-out bit

a, b, Cf Se

O 0|06 0

O 1|0 1

1 00 1

1 1(1 0

| Building Blocks & Sequential Logic

Carry = agb,
Sum = ay @ by

Half Adder

CSE369, Winter 2026
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Full Adder (1 bit)

/\carry—in Cq

L4: Combinational Building Blocks & Sequential Logic

Possible

d3 dg | 41 | 4
+ b3 by | by bg
S3  S2 | S1 | SO
Carry-in Carry-out

¢; a; b, C-ifl S5

© 0 0|0 0

© 0 1|0 1

© 1 0|0 1

© 1 1|1 ©

1 06 00 1

1 0 1|1 O

1 1 0|1 O

1 1 1|1 1

S; = XOR(ai, bi' Ci)

ci+1 = MA](qa;, b;, ¢;)

= aibi + a;C; + bici

carry In|®

Full Adder

a|® TED ®)sum

JL,
I

©

Carry Out

CSE369, Winter 2026
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Multi-Bit Adder (N bits)

+ Chain 1-bit adders by connecting CarryOut; to Carryln,_;:

by\fl A -1

1

Ca ~— ==

}

-1
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1-bit Adders in Verilog

+ What’s wrong with this? meule feliedl (g, &; 9)7
output logic s;
" Truncation! input logic a, b;

always_comb begin
S = a + b;

end
endmodule
< Fixed: module halfadd2 (c, s, a, b);
] . output logic ¢, s;
= Useof {si1g, .., s1g} for input logic a, b;

concatenation
always_comb begin

{c, s} = a + b;
end
endmodule

16
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Ripple-Carry Adder in Verilog

module fulladd (cout, s, cin, a, b);
output logic cout, s;
input Tlogic c¢in, a, b;

always_comb begin
{cout, s} = c¢in + a + b;
end
endmodule

«» Chain full adders?

module add2 (cout, s, cin, a, b);
output logic cout; output logic [1:0] s;
input logic cin; 1nput logic [1:0] a, b;
logic c1;

fulladd bl (cout, s[1], €1, a[l], b[1]);
fulladd b® (c1, s[0], cin, a[0], b[0]);
endmodule

CSE369, Winter 2026
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Subtraction?

« Can we use our multi-bit adder to do subtraction?

" Flip the bits and add 17?
- XP1=X
- Carryln, (using full adder in all positions)

Ca ~— ==

}

-1

18
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Multi-bit Adder/Subtractor

bv\'\ &“-\ bl\ a\ b() ao
1
L RN I Oy N O
xPl1=x—>") N/ Add 1
(flips the bits) (J
— SUR

Y,

This signal is only
high when you
Sn-\ Sy Se  perform subtraction

19
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L4: Combinational Building Blocks & Sequential Logic

Detecting Arithmetic Overflow

+» Overflow: When a calculation produces a result that can’t be
represented in the current encoding scheme

" |Integer range limited by fixed width

= Can occur in both the positive and negative directions

+» Unsigned Overflow

= Result of add/sub is > UMax or < Umin

+ Signed Overflow

= Result of add/sub is > TMax or < TMin
" (+)+(+)=(=) or (=) +(=)=(+)

CSE369, Winter 2026
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CSE369, Winter 2026

Signed Overflow Examples

Two’s
©101 +5
+0011 +3
Two’s
©101 +5
+0010 +2

Two’s
1001 -7
+1110 -2
Two’s
1100 -4
+0100 4

21
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Multi-bit Adder/Subtractor with Overflow

bn Ga-y a, boe Go

-
TR
Sl [P T Bl
% o J\

O\le\"F ‘ou)
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Add/Sub in Verilog (parameterized)

+» Variable-width add/sub (with overflow, carry)

module addN #(parameter N=32) (OF, CF, S, sub, A, B);

output logic OF, CF;
output logic [N-1:0] S;
input logic sub;

input logic [N-1:0] A, B;
logic [N-1:0] D; // possibly flipped B
logic C2; // second-to-last carry-out

always_comb begin
D =B *» {N{sub}}; // replication operator
{C2, S[N-2:0]} = A[N-2:0] + D[N-2:0] + sub;
{CF, S[N-1]} = A[N-1] + D[N-1] + €2;
OF = CF * C2;
end
endmodule // addN

" Here using OF = overflow flag, CF = carry flag (from condition flags in x86-64 CPUs)

23
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Add/Sub in Verilog (parameterized)

module addN_tb ();

logic sub;
logic [N-1:0] A, Bj;

logic OF, CF;
logic [N-1:0] S;

addN #(.N(4)) dut (.OF, .CF, .S, .sub, .A, .B);

initial begin

#100; sub = 0; A = 4'b0101l; B = 4'b0010; // 5 + 2
#100; sub = 0; A = 4'b1101; B = 4'ble1l; // -3 + -5
#100; sub = 0; A = 4'b0101; B = 4'be011l; // 5 + 3
#100; sub = 0; A = 4'b1001l; B = 4'bl110; // -7 + -2
#100; sub = 1; A = 4'b0101; B = 4'bl11e; // 5 -(-2)
#100; sub = 1; A = 4'b1101; B = 4'b010l; // -3 - 5
#100; sub = 1; A = 4'b0101; B = 4'bl101l; // 5 -(-3)
#100; sub = 1; A = 4'b1001; B = 4'b0010; // -7 - 2
#100;
end

endmodule // addN_tb

24
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Miso Moment

25
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Lecture Outline

» Multiplexors

+~ Adders

» Sequential Logic in theory
» Sequential Logic in Verilog

26
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L4: Combinational Building Blocks & Sequential Logic

Synchronous Digital Systems (SDS)

<~ Combinational Logic (CL)

Xq = —»7 4

X2 Logic [>Z2
Network

X — _—me

+» Sequential Logic (SL)

X1—)-
XZ_—)-

Logic
Network

-

B

— 72

m

Network of logic gates without
feedback.

Outputs are functions only of
inputs.

The presence of feedback
introduces the notion of “state.”

Circuits can “remember” or store
information.

CSE369, Winter 2026
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Uses for Sequential Logic

+» Place to store values for some amount of time:
" Registers

" Memory

+» Help control flow of information between combinational logic
blocks

*" Hold up the movement of information to allow for orderly passage
through CL

28
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WA/ UNIVERSITY of WASHINGTON

L4: Combinational Building Blocks & Sequential Logic

Control Flow of Information?

% Circuits can temporarily go to incorrect states!
Copilot Autopilot Request B

CAR
PIC

PAR

AE

A
Pilot in Charge? —{ I

Pilot Autopilot Request C

Autopilot Engaged

1

29
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Design example: Perpetual Timer

% A circuit that counts up from 0 over time
When time is up, stops counting and beeps incessantly
Needs to “remember” previous value to calculate next value

Timer /—> S

<+  Want: s = 0;
while (true) {
s = s + 1;

30
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Timer: First Try

Does this work?

+ S +_ Sout

1) How do we say: ‘S=0"?
2) How to control the next iteration
of the ‘for’ loop?

31
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Timer: Second Try

We'll add a “reset” signal
Does this work?

out

How to control the next iteration of
the ‘for’ loop?

32



WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

State Element: Flip-Flop i
+ Positive edge-triggered D-type flip flop A - ’h:l: _""'%

"= On the rising edge of the clock ( } ),
input d is sampled and held as the output “g” until the next clock edge

= All other times, the input d is ignored

LU RN U U U A

.--.t::y,.___

| ——— ] -

33
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State Element: Register

f"‘ dn - A Ao
Jrer A = R
RESET 1S ex = FF FF < - -« - |FF
; RN RN
{n %n‘l qQn-2 Qo

+» n instances of flip-flops together

" One for every bit in input/output bus width
+» Optional synchronous RESET input

" Forces Q to O when asserted

® Just shorthand for adding a mux to the FF’s input

34
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Timer: Third try

We happy? 0 + 5 AT sw

We happy :3 d
clk

Register holds up the transfer
of data to adder

35
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1 = a
Synchronous waveforms T R =
0 =1
Start by assuming no propagation delays » N d
clk =
q
clk HEHEHE -
rst
b
Sout / d
q
Time >

36
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1 = a
Synchronous waveforms T R =
0 =1
Now a propagation delay of 3ns ” S d
. clk =
(1 tick) per block ]
clk T I
rst
b XXX 0 | 1 2 | 3 | 4
Sout /d | o0c | 1 BE 3l || 8
q XXX | 1 2 | 3 | 4
Time >

37
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Autopilot Revisited

CLK|™L
1 CAR
. FI ﬂ uf-l ” Copilot Autopilot Request _
o IP-TIOPS Tl ter out @Q = Autopilot Engaged
. . AE
circuit hazards! oI Deng
Pilot in Charge?
| - FAR
Filot Autopilot Request metpy -0

38
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CSE369, Winter 2026

Safe Sequential Circuits

+ Clocked elements on feedback,
perhaps outputs

" Clock signal synchronizes operation

" Clocked elements hide glitches/hazards

" Qutput can wiggle with hazards as much as
it wants as long as it’s stable around the

positive clock edge

- More on this in a few weeks ;)

Clock |

X2 — Logic
- Network

I
v oy

—
Clock Lﬁ

Data X Compute £< Valid X
T

Compute * Valid X  Compute
] !

39



WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Lecture Outline

» Multiplexors

+» Adders

» Sequential Logic in theory
» Sequential Logic in Verilog

40
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Verilog: Basic D Flip-Flop, Register

module basic D FF (g, d, clk);
output logic q; // g is state-holding
input 1logic d, clk;

always ff (@ (posedge clk)
q <= d; // use <= for clocked elements
endmodule

module basic reg (g, d, clk);
output logic [7:0] g;
input 1logic [7:0] d;
input logic clk;

always ff ( (posedge clk)
q <= d;
endmodule

clk >

clk —

CSE369, Winter 2026
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Reminder: “always_comb” blocks

+ Verilog requires us to wrap control flow statements in an
always_comb block
= Block defines the full set of circuits that may drive the value on a Log1 c variable

" |dea: the last assignment in an always block to a given variable is the result that
gets used

+~ But | promised there were more species of “always” block...

42
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Exercise for the reader: Advanced Timer

+» Draw a circuit diagram for a block that counts up from 0 to

parameter N
Very similar to our “perpetual timer” example, but it’ll need another
mux and a block to compare if two numbers are equal
Can use a black box for the comparator
(but you know enough to design that too, if you wanted to @

Reset /— Ticks

Clock Timer > Beep!!

43



WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Summary (1/2)

+» Multiplexors switch signals to the output

= |llustrated in block diagrams as trapezoids with labelled inputs and a
select signal

+ Binary addition and subtraction can be performed with chained
full adders

®" Two’'s complement allows us to use the same hardware

"= We can detect signed overflow by XORing the carry-in and carry-out of
the sign bit

44
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Summary (2/2)

+ State elements controlled by clock
= Store information

= Control the flow of information between other state elements and combinational
logic

+ Registers implemented from flip-flops
" Triggered by CLK, pass input to output, can reset

45
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