WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Intro to Digital Design
L4:

Instructor: Naomi Alterman

Teaching Assistants:

Derek de Leuw Isabel Froelich
Kevin Hernandez Sathvik Kanuri
Aadithya Manoj

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic

Administrivia

+» Lab 3 Demos due during your assigned demo slots

"= Don’t forget to submit your lab materials before Wednesday at 2:30 pm,
regardless of your demo time

" Come to lab with your reports open and bitfiles ready to load up
+» Lab 4 — 7-segment displays

% Quiz 1 is next week in lecture
= Last 20 minutes, worth 10% of your course grade
" On Lectures 1-3: CL, K-maps, Waveforms, and Verilog
= Past Quiz 1 (+ solutions) on website: Course Info — Quizzes

CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Lecture Outline

» Multiplexors

+~ Adders

» Sequential Logic in theory
» Sequential Logic in Verilog

WA/ UNIVERSITY of WASHINGTON

Data Multiplexor

L4: Combinational Building Blocks & Sequential Logic

+» Multiplexor (“MUX") is a selector

CSE369, Winter 2026

= Use an s-bit “select signal” to direct one of 25 n-bit wide inputs to output
" Called a n-bit, N-to-1 MUX

« Example: n-bit 2-to-1 MUX

" |Input S (s bits wide) selects between two inputs of n bits each

N inputs —

o

C

— This input is passed to

output if selector bits
match shown value

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Review: Implementing a 1-bit 2-to-1 MUX

+ Schematic: o +~ Boolean Algebra:
-—-——-ﬂ — B B
- ¢ = Sab—+ sab + sab + sab
b ‘ = 5(ab+ ab) + s(ab + ab)
< =35(a(b+ b)) + s((a+ a)b)
= 5(a(1) + s((1)d)
| =35a + sb |
. s a b]c
+ Truth Table: — T
© 0 1|0
© 1 0]1
o 1 1)1
1 0 0fo
1 0 1|1
1 1 0fo
1 1 1|1

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

1-bit 4-to-1 MUX

+» Schematic: a b c A

+» Truth Table: How many rows?

+ Boolean Expression:
e = 5150a + S1Sob + s1SgC + sy5pd

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

1-bit 4-to-1 MUX

+» Can we leverage what we’ve previously built?

= Alternative hierarchical approach:

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Multiplexers in General Logic

» Implement F = XYZ + YZ with a 8:1 MUX

|
/

N0 b~ WDNR
(00
—_

L]

CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic

Lecture Outline

» Multiplexors

» Adders

» Sequential Logic in theory
» Sequential Logic in Verilog

L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON

Review: Unsigned Integers

+ Unsigned values follow the standard base 2 system
" b7b6b5b4b3b2b1b0 — b727 + b626 + -+ b121 + bOZO

+ In n bits, represent integers 0 to 2"-1

+» Add and subtract using the “carry” and “borrow” rules, just in binary

63 00111111 64 01000000

+_8 +00001000 -_8 -00001000
71 01000111 56 00111000

10

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Review: Two’s Complement (Signed)

b,,_1 has weight —2W~1, other bits have usual weights +2!
Z |

4 Y
w-2 ‘b bO

b b

w-1

+ Properties:

" |nn bits, represent integers —2""1 to 271 — 1 1111

1110
1101

1100

0000
0001
0010

0011

= Positive number encodings match
unsigned numbers

= Single zero (encoding = all zeros) Two’s

_g\1011 Complement 100
1010 0101

+» Negation procedure:

= Take the bitwise complement -6\ 1001 0110
and then add one 1000 0111
(~x + 1 == -x) -8 +7

11

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Addition and Subtraction in Hardware

+» The same bit manipulations work for both unsigned and two’s
complement numbers!

= Perform subtraction via adding the negated 2"9 operand:
A—-B=A+(-B)=A+(~B)+1

+ 4-bit examples: Two’s Un Two’s Un
O010 +2 2 1000 -8 8

+1100 -4 12 +0100 +4 4

110 +6 6 1111 -1 15

-0010 +2 2 -1110 -2 14

12

WA/ UNIVERSITY of WASHINGTON

L4: Combinationa

Half Adder (1 bit)

d3 dg 4j | 40
+ by by by |bg
S3 S22 S1 | So
Carry-out bit

a, b, Cf Se

O 0|06 0

O 1|0 1

1 00 1

1 1(1 0

| Building Blocks & Sequential Logic

Carry = agb,
Sum = ay @ by

Half Adder

CSE369, Winter 2026

13

WA/ UNIVERSITY of WASHINGTON

Full Adder (1 bit)

/\carry—in Cq

L4: Combinational Building Blocks & Sequential Logic

Possible

d3 dg | 41 | 4
+ b3 by | by bg
S3 S2 | S1 | SO
Carry-in Carry-out

¢; a; b, C-ifl S5

© 0 0|0 0

© 0 1|0 1

© 1 0|0 1

© 1 1|1 ©

1 06 00 1

1 0 1|1 O

1 1 0|1 O

1 1 1|1 1

S; = XOR(ai, bi' Ci)

ci+1 = MA](qa;, b;, ¢;)

= aibi + a;C; + bici

carry In|®

Full Adder

a|® TED ®)sum

JL,
I

©

Carry Out

CSE369, Winter 2026

14

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Multi-Bit Adder (N bits)

+ Chain 1-bit adders by connecting CarryOut; to Carryln,_;:

by\fl A -1

1

Ca ~— ==

}

-1

15

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

1-bit Adders in Verilog

+ What’s wrong with this? meule feliedl (g, &; 9)7
output logic s;
" Truncation! input logic a, b;

always_comb begin
S = a + b;

end
endmodule
< Fixed: module halfadd2 (c, s, a, b);
] . output logic ¢, s;
= Useof {si1g, .., s1g} for input logic a, b;

concatenation
always_comb begin

{c, s} = a + b;
end
endmodule

16

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic

Ripple-Carry Adder in Verilog

module fulladd (cout, s, cin, a, b);
output logic cout, s;
input Tlogic c¢in, a, b;

always_comb begin
{cout, s} = c¢in + a + b;
end
endmodule

«» Chain full adders?

module add2 (cout, s, cin, a, b);
output logic cout; output logic [1:0] s;
input logic cin; 1nput logic [1:0] a, b;
logic c1;

fulladd bl (cout, s[1], €1, a[l], b[1]);
fulladd b® (c1, s[0], cin, a[0], b[0]);
endmodule

CSE369, Winter 2026

17

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Subtraction?

« Can we use our multi-bit adder to do subtraction?

" Flip the bits and add 17?
- XP1=X
- Carryln, (using full adder in all positions)

Ca ~— ==

}

-1

18

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Multi-bit Adder/Subtractor

bv\'\ &“-\ bl\ a\ b() ao
1
L RN I Oy N O
xPl1=x—>") N/ Add 1
(flips the bits) (J
— SUR

Y,

This signal is only
high when you
Sn-\ Sy Se perform subtraction

19

WA/ UNIVERSITY of WASHINGTON

L4: Combinational Building Blocks & Sequential Logic

Detecting Arithmetic Overflow

+» Overflow: When a calculation produces a result that can’t be
represented in the current encoding scheme

" |Integer range limited by fixed width

= Can occur in both the positive and negative directions

+» Unsigned Overflow

= Result of add/sub is > UMax or < Umin

+ Signed Overflow

= Result of add/sub is > TMax or < TMin
" (+)+(+)=(=) or (=) +(=)=(+)

CSE369, Winter 2026

20

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic

CSE369, Winter 2026

Signed Overflow Examples

Two’s
©101 +5
+0011 +3
Two’s
©101 +5
+0010 +2

Two’s
1001 -7
+1110 -2
Two’s
1100 -4
+0100 4

21

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Multi-bit Adder/Subtractor with Overflow

bn Ga-y a, boe Go

-
TR
Sl [P T Bl
% o J\

O\le\"F ‘ou)

22

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Add/Sub in Verilog (parameterized)

+» Variable-width add/sub (with overflow, carry)

module addN #(parameter N=32) (OF, CF, S, sub, A, B);

output logic OF, CF;
output logic [N-1:0] S;
input logic sub;

input logic [N-1:0] A, B;
logic [N-1:0] D; // possibly flipped B
logic C2; // second-to-last carry-out

always_comb begin
D =B *» {N{sub}}; // replication operator
{C2, S[N-2:0]} = A[N-2:0] + D[N-2:0] + sub;
{CF, S[N-1]} = A[N-1] + D[N-1] + €2;
OF = CF * C2;
end
endmodule // addN

" Here using OF = overflow flag, CF = carry flag (from condition flags in x86-64 CPUs)

23

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Add/Sub in Verilog (parameterized)

module addN_tb ();

logic sub;
logic [N-1:0] A, Bj;

logic OF, CF;
logic [N-1:0] S;

addN #(.N(4)) dut (.OF, .CF, .S, .sub, .A, .B);

initial begin

#100; sub = 0; A = 4'b0101l; B = 4'b0010; // 5 + 2
#100; sub = 0; A = 4'b1101; B = 4'ble1l; // -3 + -5
#100; sub = 0; A = 4'b0101; B = 4'be011l; // 5 + 3
#100; sub = 0; A = 4'b1001l; B = 4'bl110; // -7 + -2
#100; sub = 1; A = 4'b0101; B = 4'bl11e; // 5 -(-2)
#100; sub = 1; A = 4'b1101; B = 4'b010l; // -3 - 5
#100; sub = 1; A = 4'b0101; B = 4'bl101l; // 5 -(-3)
#100; sub = 1; A = 4'b1001; B = 4'b0010; // -7 - 2
#100;
end

endmodule // addN_tb

24

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE3609, Winter 2026

Miso Moment

25

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Lecture Outline

» Multiplexors

+~ Adders

» Sequential Logic in theory
» Sequential Logic in Verilog

26

WA/ UNIVERSITY of WASHINGTON

L4: Combinational Building Blocks & Sequential Logic

Synchronous Digital Systems (SDS)

<~ Combinational Logic (CL)

Xq = —»7 4

X2 Logic [>Z2
Network

X — _—me

+» Sequential Logic (SL)

X1—)-
XZ_—)-

Logic
Network

-

B

— 72

m

Network of logic gates without
feedback.

Outputs are functions only of
inputs.

The presence of feedback
introduces the notion of “state.”

Circuits can “remember” or store
information.

CSE369, Winter 2026

27

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Uses for Sequential Logic

+» Place to store values for some amount of time:
" Registers

" Memory

+» Help control flow of information between combinational logic
blocks

*" Hold up the movement of information to allow for orderly passage
through CL

28

CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON

L4: Combinational Building Blocks & Sequential Logic

Control Flow of Information?

% Circuits can temporarily go to incorrect states!
Copilot Autopilot Request B

CAR
PIC

PAR

AE

A
Pilot in Charge? —{ I

Pilot Autopilot Request C

Autopilot Engaged

1

29

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Design example: Perpetual Timer

% A circuit that counts up from 0 over time
When time is up, stops counting and beeps incessantly
Needs to “remember” previous value to calculate next value

Timer /—> S

<+ Want: s = 0;
while (true) {
s = s + 1;

30

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Timer: First Try

Does this work?

+ S +_ Sout

1) How do we say: ‘S=0"?
2) How to control the next iteration
of the ‘for’ loop?

31

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Timer: Second Try

We'll add a “reset” signal
Does this work?

out

How to control the next iteration of
the ‘for’ loop?

32

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

State Element: Flip-Flop i
+ Positive edge-triggered D-type flip flop A - ’h:l: _""'%

"= On the rising edge of the clock (}),
input d is sampled and held as the output “g” until the next clock edge

= All other times, the input d is ignored

LU RN U U U A

.--.t::y,.___

| ———] -

33

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

State Element: Register

f"‘ dn - A Ao
Jrer A = R
RESET 1S ex = FF FF < - -« - |FF
; RN RN
{n %n‘l qQn-2 Qo

+» n instances of flip-flops together

" One for every bit in input/output bus width
+» Optional synchronous RESET input

" Forces Q to O when asserted

® Just shorthand for adding a mux to the FF’s input

34

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Timer: Third try

We happy? 0 + 5 AT sw

We happy :3 d
clk

Register holds up the transfer
of data to adder

35

W UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026
1 = a
Synchronous waveforms T R =
0 =1
Start by assuming no propagation delays » N d
clk =
q
clk HEHEHE -
rst
b
Sout / d
q
Time >

36

W UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026
1 = a
Synchronous waveforms T R =
0 =1
Now a propagation delay of 3ns ” S d
. clk =
(1 tick) per block]
clk T I
rst
b XXX 0 | 1 2 | 3 | 4
Sout /d | o0c | 1 BE 3l || 8
q XXX | 1 2 | 3 | 4
Time >

37

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Autopilot Revisited

CLK|™L
1 CAR
. FI ﬂ uf-l ” Copilot Autopilot Request _
o IP-TIOPS Tl ter out @Q = Autopilot Engaged
. . AE
circuit hazards! oI Deng
Pilot in Charge?
| - FAR
Filot Autopilot Request metpy -0

38

WA/ UNIVERSITY of WASHINGTON

L4: Combinational Building Blocks & Sequential Logic

CSE369, Winter 2026

Safe Sequential Circuits

+ Clocked elements on feedback,
perhaps outputs

" Clock signal synchronizes operation

" Clocked elements hide glitches/hazards

" Qutput can wiggle with hazards as much as
it wants as long as it’s stable around the

positive clock edge

- More on this in a few weeks ;)

Clock |

X2 — Logic
- Network

I
v oy

—
Clock Lﬁ

Data X Compute £< Valid X
T

Compute * Valid X Compute
] !

39

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Lecture Outline

» Multiplexors

+» Adders

» Sequential Logic in theory
» Sequential Logic in Verilog

40

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic

Verilog: Basic D Flip-Flop, Register

module basic D FF (g, d, clk);
output logic q; // g is state-holding
input 1logic d, clk;

always ff (@ (posedge clk)
q <= d; // use <= for clocked elements
endmodule

module basic reg (g, d, clk);
output logic [7:0] g;
input 1logic [7:0] d;
input logic clk;

always ff ((posedge clk)
q <= d;
endmodule

clk >

clk —

CSE369, Winter 2026

41

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Reminder: “always_comb” blocks

+ Verilog requires us to wrap control flow statements in an
always_comb block
= Block defines the full set of circuits that may drive the value on a Log1 c variable

" |dea: the last assignment in an always block to a given variable is the result that
gets used

+~ But | promised there were more species of “always” block...

42

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Exercise for the reader: Advanced Timer

+» Draw a circuit diagram for a block that counts up from 0 to

parameter N
Very similar to our “perpetual timer” example, but it’ll need another
mux and a block to compare if two numbers are equal
Can use a black box for the comparator
(but you know enough to design that too, if you wanted to @

Reset /— Ticks

Clock Timer > Beep!!

43

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Summary (1/2)

+» Multiplexors switch signals to the output

= |llustrated in block diagrams as trapezoids with labelled inputs and a
select signal

+ Binary addition and subtraction can be performed with chained
full adders

®" Two’'s complement allows us to use the same hardware

"= We can detect signed overflow by XORing the carry-in and carry-out of
the sign bit

44

WA/ UNIVERSITY of WASHINGTON L4: Combinational Building Blocks & Sequential Logic CSE369, Winter 2026

Summary (2/2)

+ State elements controlled by clock
= Store information

= Control the flow of information between other state elements and combinational
logic

+ Registers implemented from flip-flops
" Triggered by CLK, pass input to output, can reset

45

	Slide 1: Intro to Digital Design L4: Combinational Building Blocks & Sequential Logic
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Data Multiplexor
	Slide 5: Review: Implementing a 1-bit 2-to-1 MUX
	Slide 6: 1-bit 4-to-1 MUX
	Slide 7: 1-bit 4-to-1 MUX
	Slide 8: Multiplexers in General Logic
	Slide 9: Lecture Outline
	Slide 10: Review: Unsigned Integers
	Slide 11: Review: Two’s Complement (Signed)
	Slide 12: Addition and Subtraction in Hardware
	Slide 13: Half Adder (1 bit)
	Slide 14: Full Adder (1 bit)
	Slide 15: Multi-Bit Adder (N bits)
	Slide 16: 1-bit Adders in Verilog
	Slide 17: Ripple-Carry Adder in Verilog
	Slide 18: Subtraction?
	Slide 19: Multi-bit Adder/Subtractor
	Slide 20: Detecting Arithmetic Overflow
	Slide 21: Signed Overflow Examples
	Slide 22: Multi-bit Adder/Subtractor with Overflow
	Slide 23: Add/Sub in Verilog (parameterized)
	Slide 24: Add/Sub in Verilog (parameterized)
	Slide 25
	Slide 26: Lecture Outline
	Slide 27: Synchronous Digital Systems (SDS)
	Slide 28: Uses for Sequential Logic
	Slide 29: Control Flow of Information?
	Slide 30: Design example: Perpetual Timer
	Slide 31: Timer: First Try
	Slide 32: Timer: Second Try
	Slide 33: State Element: Flip-Flop
	Slide 34: State Element: Register
	Slide 35: Timer: Third try
	Slide 36: Synchronous waveforms
	Slide 37: Synchronous waveforms
	Slide 38: Autopilot Revisited
	Slide 39: Safe Sequential Circuits
	Slide 40: Lecture Outline
	Slide 41: Verilog: Basic D Flip-Flop, Register
	Slide 42: Reminder: “always_comb” blocks
	Slide 43: Exercise for the reader: Advanced Timer
	Slide 44: Summary (1/2)
	Slide 45: Summary (2/2)

