

Intro to Digital Design

L3: Karnaugh Maps

Instructor: Naomi Alterman

Teaching Assistants:

Derek de Leuw

Isabel Froelich

Kevin Hernandez

Sathvik Kanuri

Aadithya Manoj

Administrivia

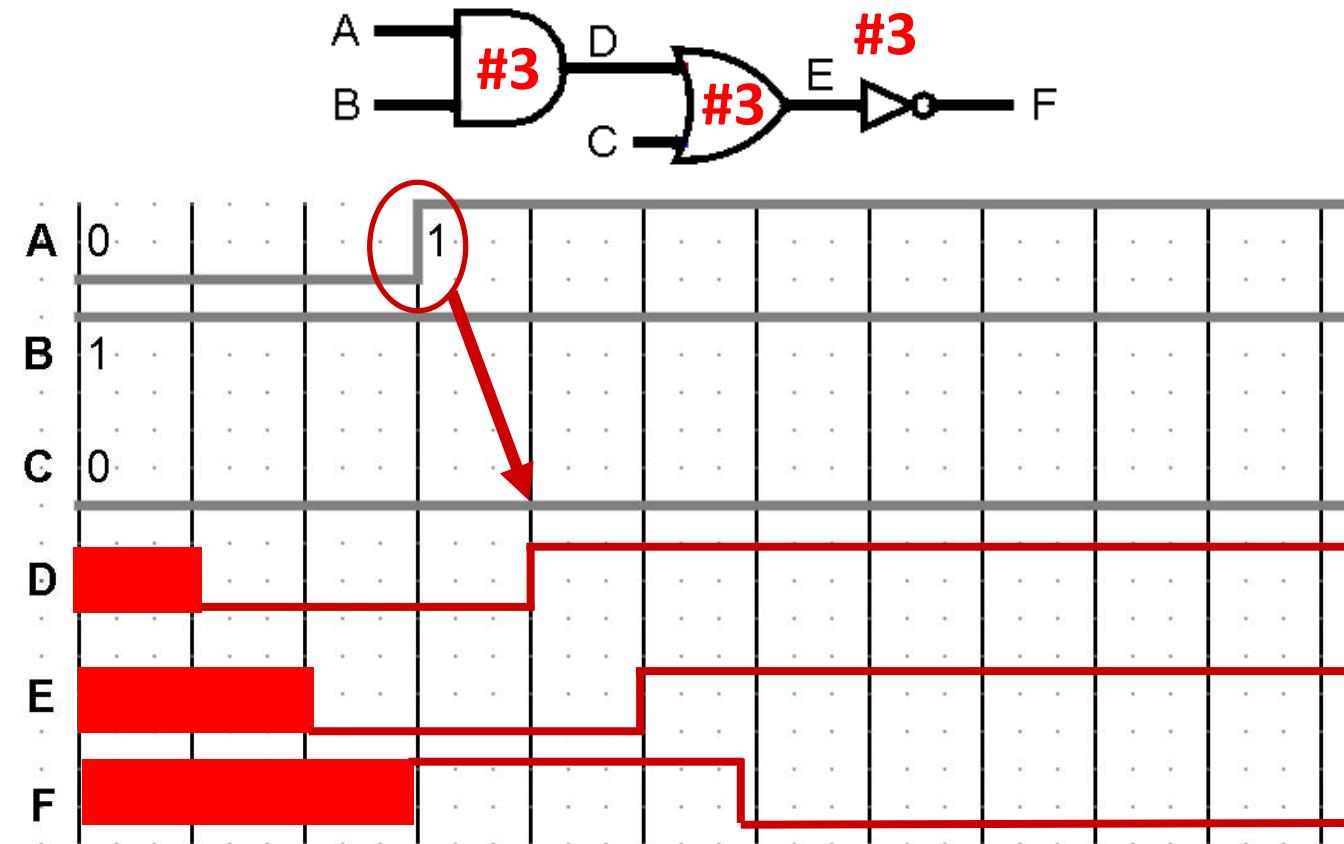
- ❖ Lab 1 & 2 approaches!
 - Reports + code due on Gradescope by Wednesday @ 2:30p, *regardless of your demo time!*
 - Demos due during your assigned demo slots
 - If you don't have a lab kit yet, demo your design to TAs with LabsLand
- ❖ Lab 3 out – Logic simplification with K-maps and Verilog
 - Due a week from tomorrow (1/28 @ 2:30p)
 - Full credit for minimal logic
- ❖ More lab kits arriving soon
 - Hopefully in time to give them to you during your lab demo

When last we left off...

Circuit Hazards

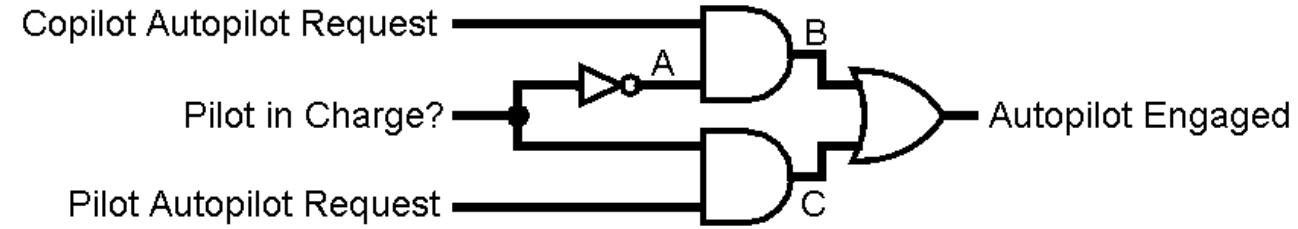
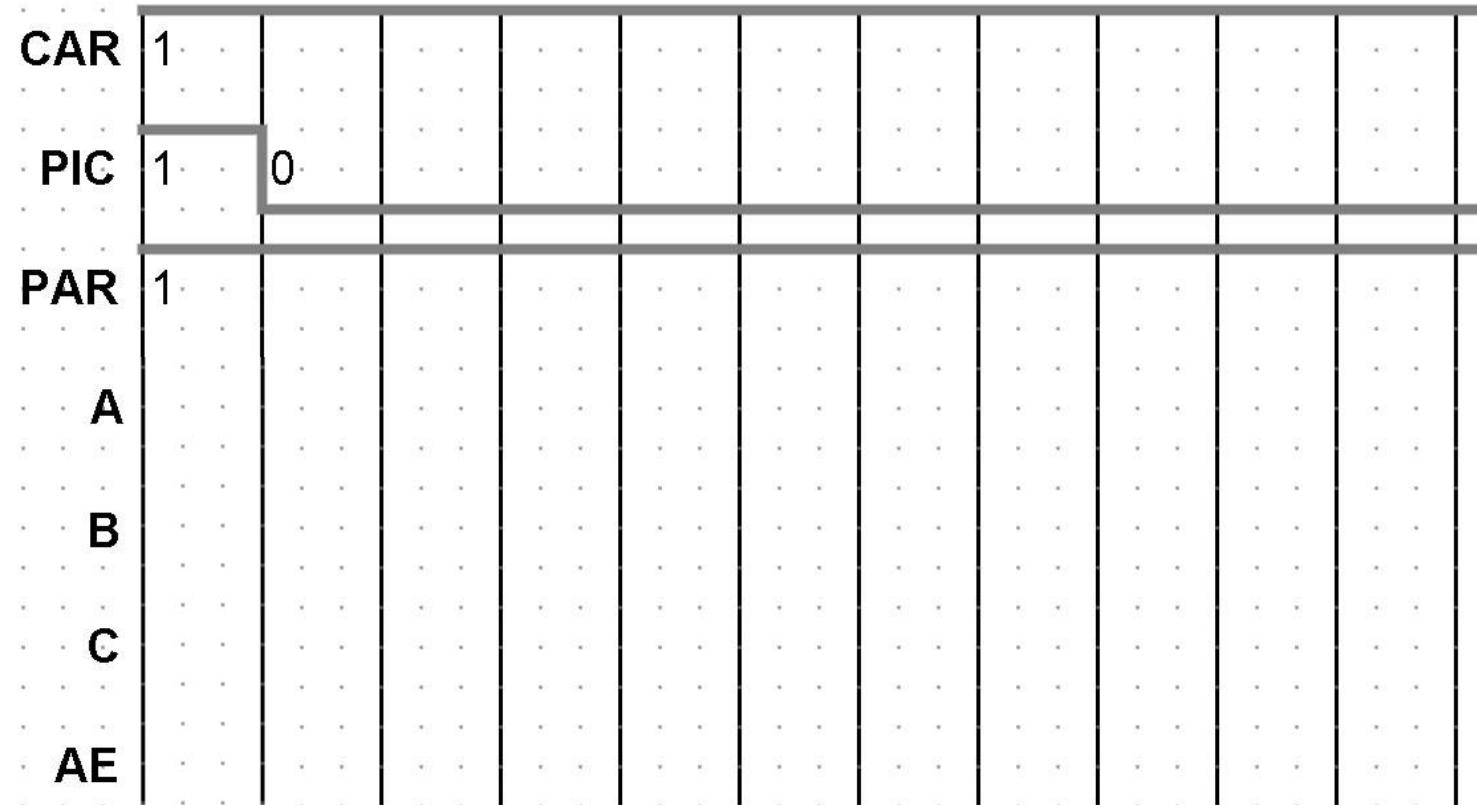
Correction from Lec 2

- ❖ Corrected diagram from slide 38 last week (sorry!)
 - Assuming gate delay of 1 ns (= 3 ticks)



Circuit Timing: Hazards/Glitches

- ❖ Circuits can temporarily go to incorrect states!
 - Assuming gate delay of 1 ns / 3 ticks



Circuit Hazards

- ❖ Momentary wiggles in output of combinational logic before it “settles” on the right answer
 - Mostly doesn’t matter (we’ll see why next week)
 - But when it does matter, it can make the plane crash
 - Can be avoided with *redundant* gates (eg, not fully simplified equations)
- ❖ Classification:
 - “Static-0” (output spikes to 1 before settling to 0)
 - Only a problem for PoS equations
 - “Static-1” (output dips to 0 before settling to 1)
 - Only a problem for SoP equations
 - “Dynamic” (lots of wiggles)

Cool band names

- ❖ From the “See Also” section of the [Wikipedia article](#) for logic hazards:

See also [edit]

- [Don't care](#)
- [Floating body effect](#), a probably cause for
- [Glitch](#)
- [Hazard \(computer architecture\)](#)
- [Logic redundancy](#)
- [Race condition](#)

Lecture Outline

- ❖ Hazards
- ❖ **Karnaugh Maps (K-maps)**
- ❖ Design Examples

On and Off Sets

- ❖ *On Set* is the set of input patterns where the function is TRUE
 - Here on set = $\{\bar{A}\bar{B}C, \bar{A}BC, A\bar{B}\bar{C}, A\bar{B}C\}$

- ❖ *Off Set* is the set of input patterns where the function is FALSE
 - Here off set = $\{\bar{A}\bar{B}\bar{C}, \bar{A}B\bar{C}, AB\bar{C}, ABC\}$

- ❖ **Recall:** Use the On Set for *Sum of Products* (SoP) and the Off Set for *Product of Sums* (PoS)
 - Considered **two-level** Boolean expressions

A	B	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

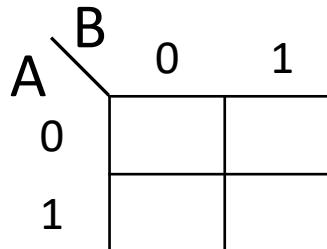
Two-Level Simplification

- ❖ Using Sum of Products, “neighboring” input combinations simplify
 - “Neighboring”: inputs that differ by a single signal
 - *The Uniting Theorem*: $A(\bar{B} + B) = A$
 - *e.g.*, $AB + \bar{A}B = B$, $\bar{A}BC + \bar{A}B\bar{C} = \bar{A}B$
- ❖ **Goal:** Find neighboring subsets of the On Set to eliminate variables and simplify the expression
- ❖ **Technique:** A **Karnaugh map** (“K-map”) is a method of rearranging a truth table to *visualize* the terms that can be simplified with the uniting theorem
 - For ≤ 4 dimensions. For more, we use a computer implementation of the same technique called the “Quine-McCluskey algorithm”

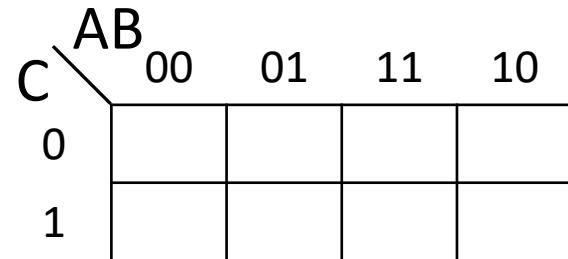
Karnaugh Maps

- ❖ Rearrange table into a 2D grid with inputs on the edges and outputs in the grid cells
- ❖ If more than 2 inputs, “group” them along the edges and write out all combinations of bits arranged so that **neighboring combinations change only by 1 input (“Gray code”)**

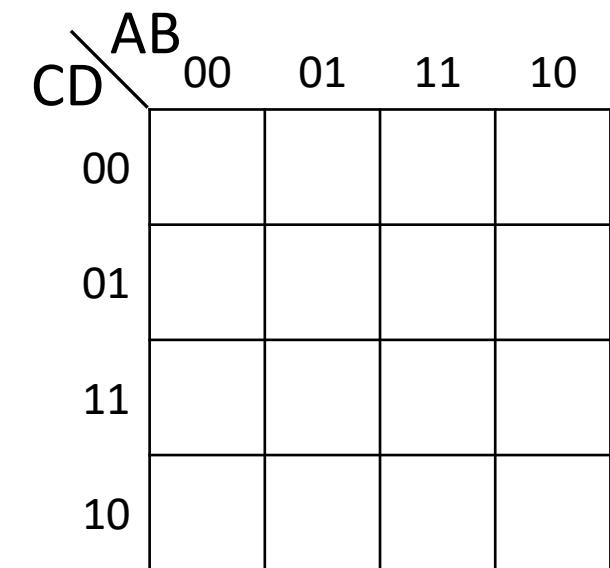
2 Inputs:



3 Inputs:



4 Inputs:

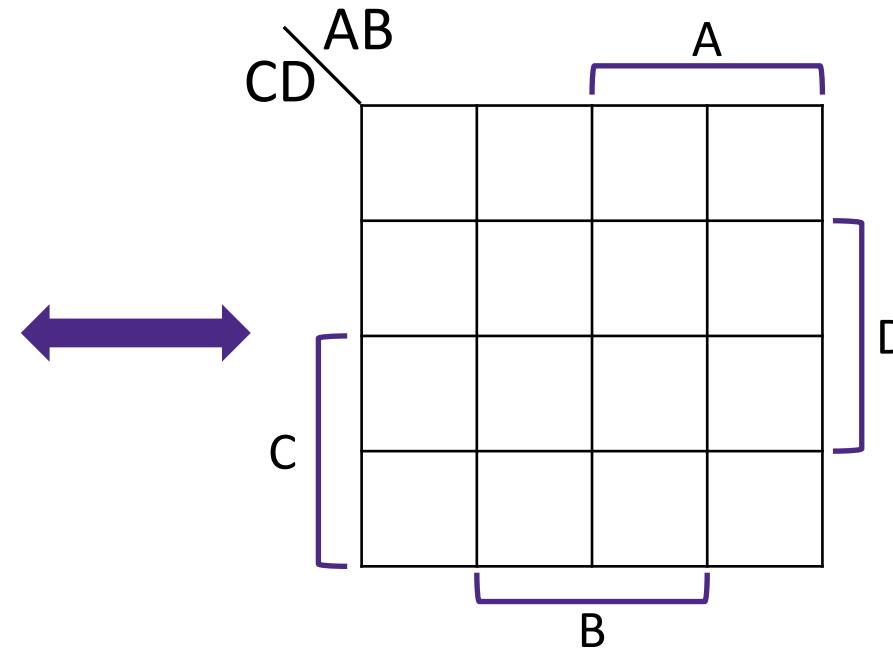


Karnaugh Maps

- Also see visualization with brackets for “asserted” simplifications:

4 Inputs:

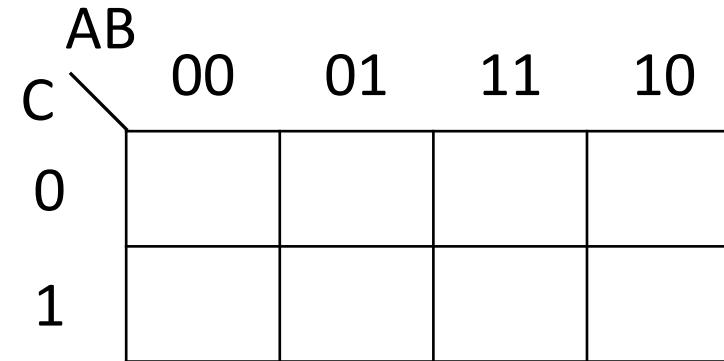
CD \ AB	00	01	11	10
00				
01				
11				
10				



K-map Example: Majority Circuit

- ❖ Filling in a Karnaugh map:

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

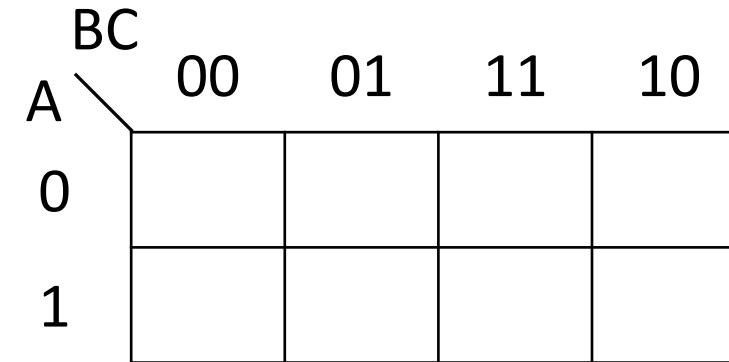


- ❖ Each row of truth table corresponds to ONE cell of Karnaugh map
- ❖ Note the jump when you go from input 011 to 100
(most mistakes made here)

K-map Example: Majority Circuit

- ❖ Filling in alternate Karnaugh map:

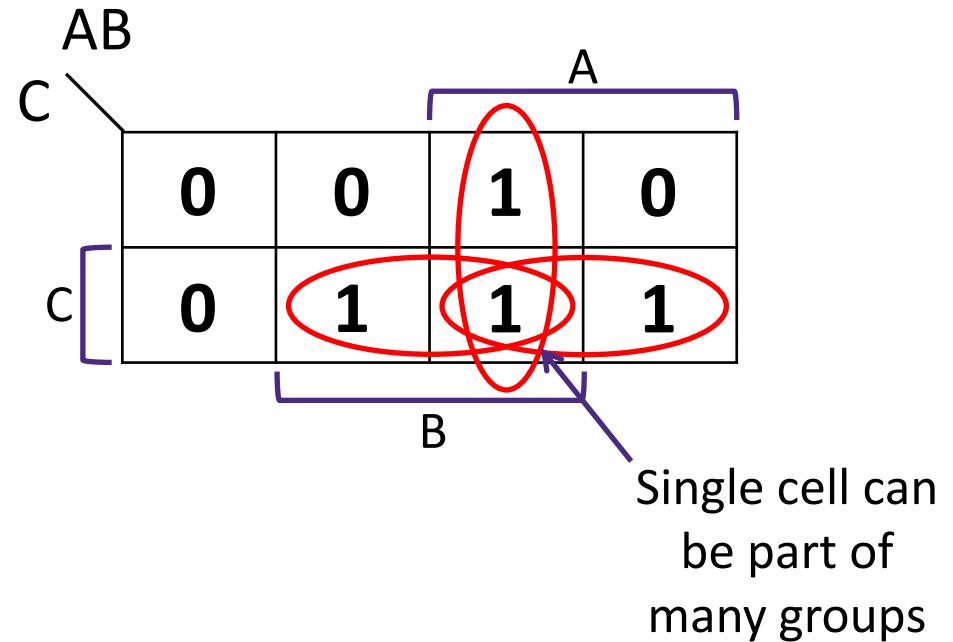
A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1



- ❖ Each row of truth table corresponds to ONE cell of Karnaugh map
- ❖ Note the jump when you go from input 001 to 010 and 101 to 110 (*most mistakes made here*)

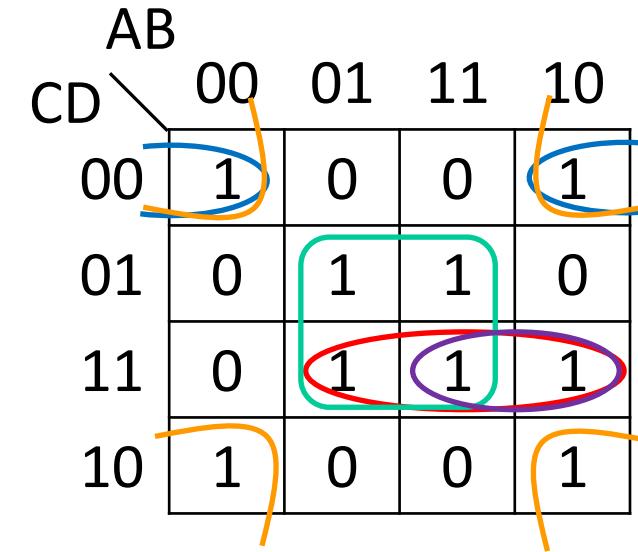
K-map Simplification

- ❖ Group neighboring 1's with circles
 - Each circle becomes an equation term
 - Make sure ***all*** 1's are circled
- ❖ $F = BC + AB + AC$
- ❖ Larger groups become smaller terms
 - The single 1 in top row $\rightarrow AB\bar{C}$
 - Vertical group of two 1's $\rightarrow AB$
 - If entire lower row was 1's $\rightarrow C$



General K-map Rules

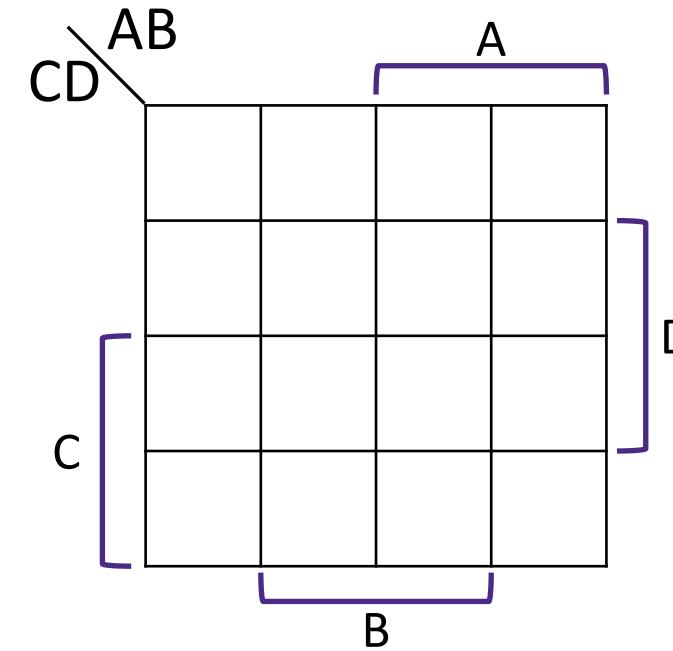
- ❖ Only group in powers of 2
 - Grouping should be of size $2^i \times 2^j$
 - Applies for both directions
- ❖ Wraps around in all directions
 - “Corners” case is extreme example
- ❖ Always choose largest groupings possible
 - Avoid single cells whenever possible
- ❖ $F = BD + \bar{B}\bar{D} + ACD$



- 1) NOT a valid group
- 2) IS a valid group
- 3) IS a valid group
- 4) “Corners” case
- 5) 1 of 2 good choices here

K-Map Example

- ❖ $F = \bar{A}D + BD + \bar{B}C + A\bar{B}D$



Miso Moment

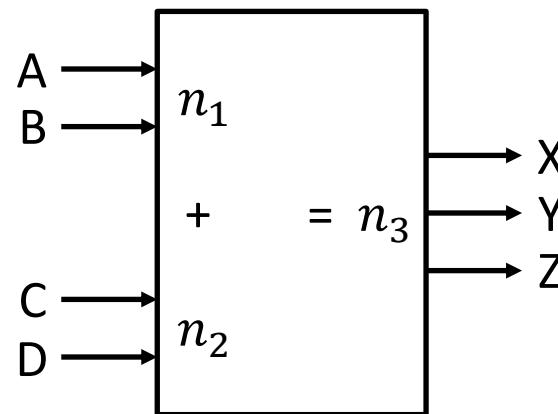
Lecture Outline

- ❖ Hazards
- ❖ Karnaugh Maps (K-maps)
- ❖ **Design Examples**

Design Example: 2-bit Adder

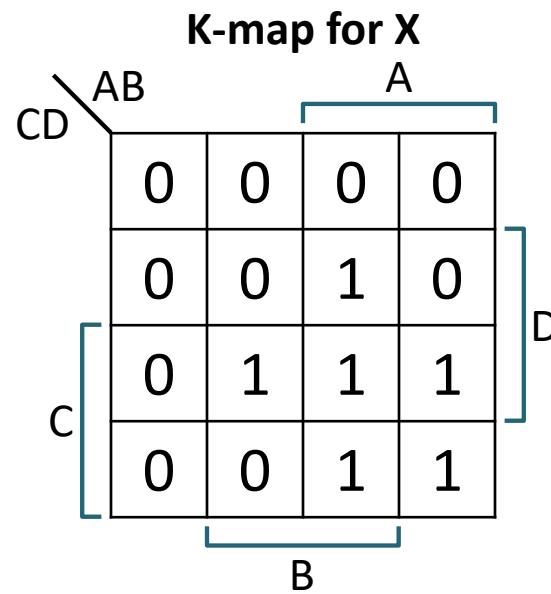
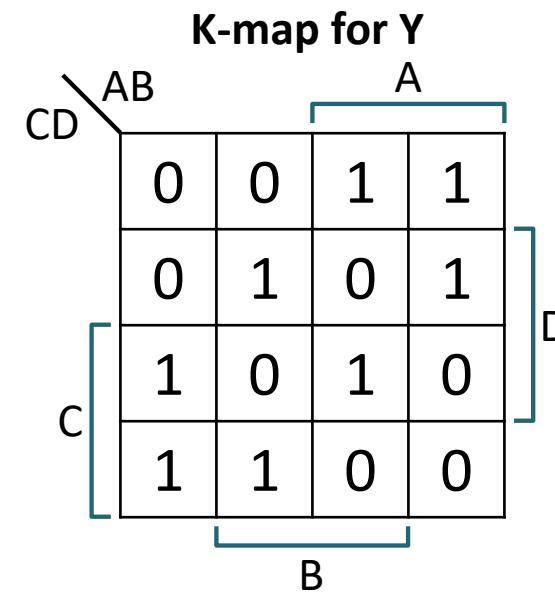
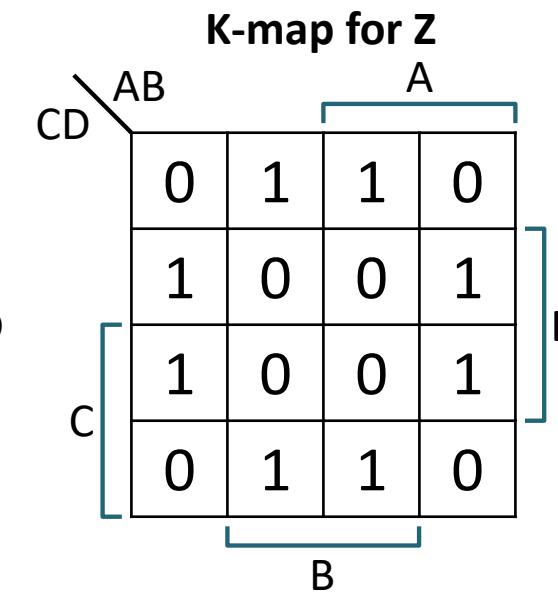
We'll need a new k-map for each output

- Block Diagram and Truth Table:



A	B	C	D	X	Y	Z
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

Design Example: 2-bit Adder



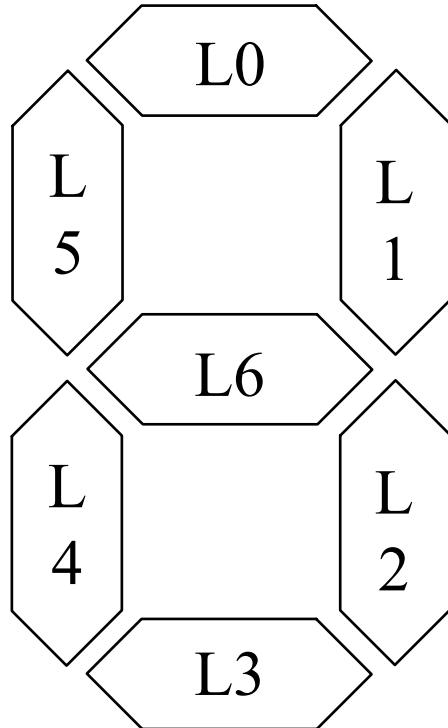
$X =$

$Y =$

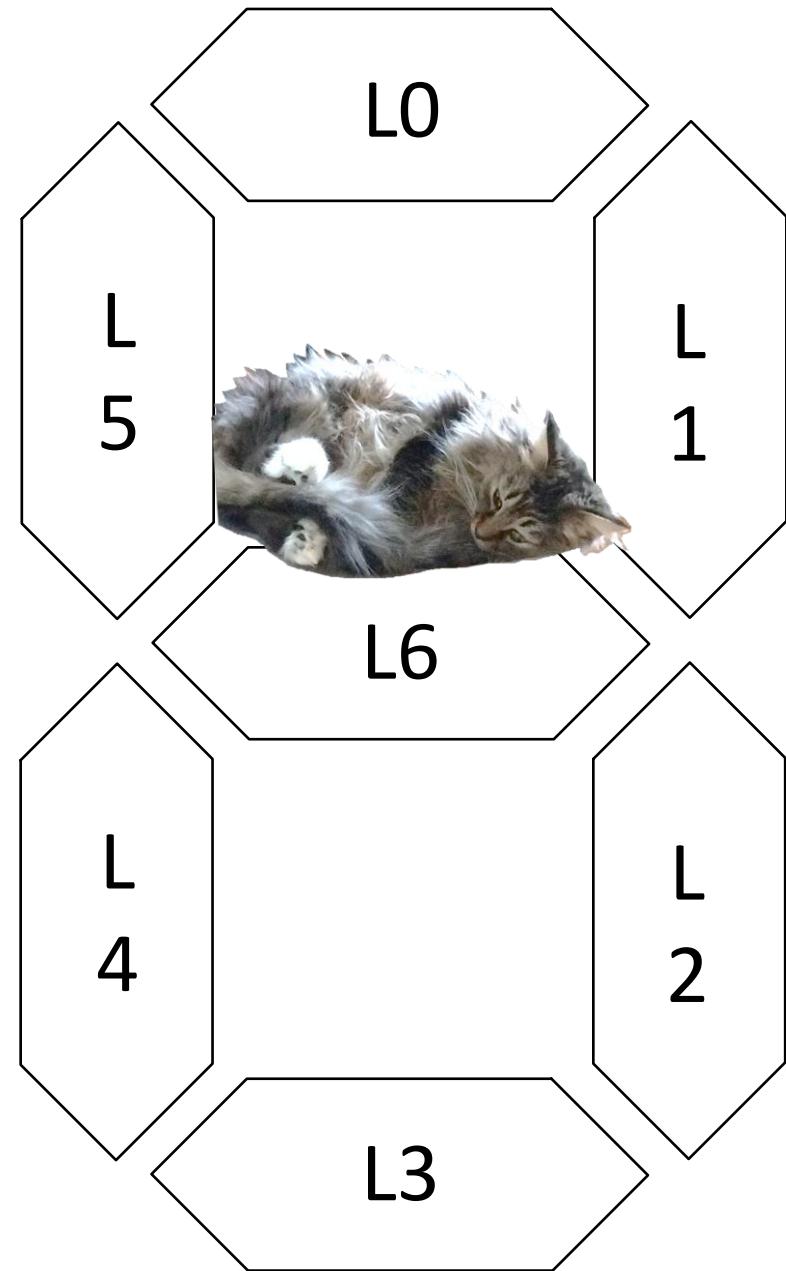
$Z =$

Case Study: Seven-Segment Display

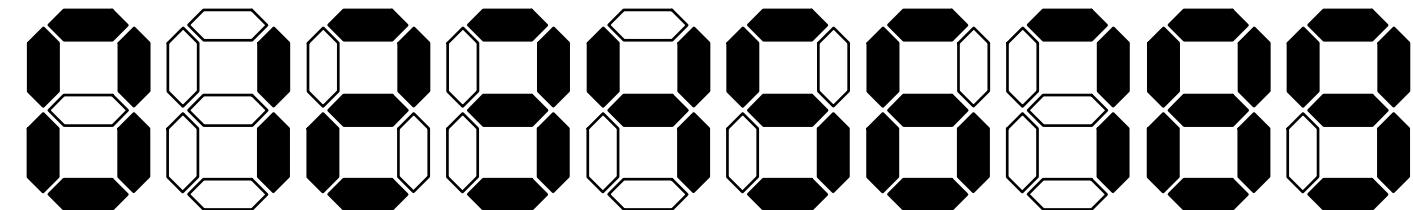
- ❖ Chip to drive digital display



B3	B2	B1	B0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0



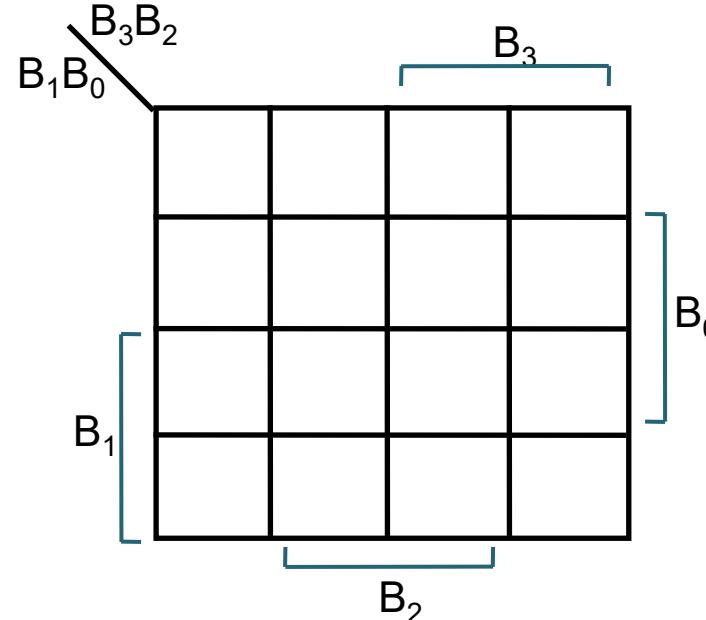
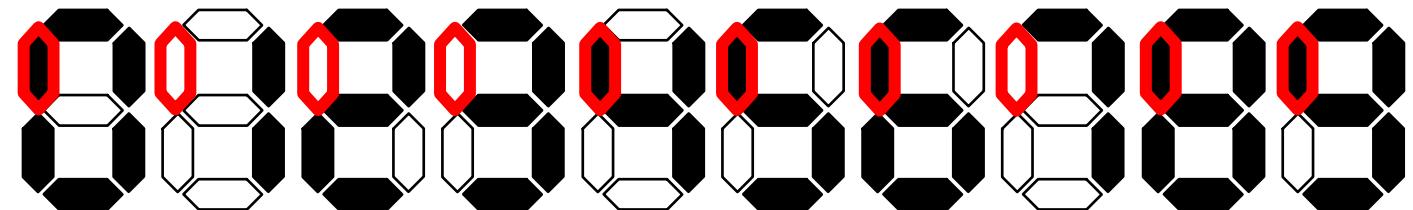
B3	B2	B1	B0	Val	L0	L1	L2	L3	L4	L5	L6
0	0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	1	0	1	1	0	0	0	0
0	0	1	0	2	1	1	0	1	1	0	1
0	0	1	1	3	1	1	1	1	0	0	1
0	1	0	0	4	0	1	1	0	0	1	1
0	1	0	1	5	1	0	1	1	0	1	1
0	1	1	0	6	1	0	1	1	1	1	1
0	1	1	1	7	1	1	1	0	0	0	0
1	0	0	0	8	1	1	1	1	1	1	1
1	0	0	1	9	1	1	1	1	0	1	1



Case Study: Seven-Segment Display

- ❖ Implement L5:

B3	B2	B1	B0	L5
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1



7-Seg Display in Verilog

```
module seg7 (bcd, leds);
  input logic [3:0] bcd;
  output logic [6:0] leds;

  always_comb
    case (bcd)
      // 3210          6543210
      4'b0000: leds = 7'b0111111;
      4'b0001: leds = 7'b0000110;
      4'b0010: leds = 7'b1011011;
      4'b0011: leds = 7'b1001111;
      4'b0100: leds = 7'b1100110;
      4'b0101: leds = 7'b1101101;
      4'b0110: leds = 7'b1111101;
      4'b0111: leds = 7'b0000111;
      4'b1000: leds = 7'b1111111;
      4'b1001: leds = 7'b1101111;
      default: leds = 7'bX;
    endcase
endmodule
```

Verilog Signal Manipulation

- ❖ Bus definition: `[n-1:0]` is an n-bit bus
 - Good practice to follow bit numbering notation
 - Access individual bit/wire using “array” syntax (e.g., `bus[1]`)
 - Can slice busses using similar notation (e.g., `bus[4:2]`)
- ❖ Multi-bit constants: `n'r###...`
 - n is bit width, b is radix/base, #s are the actual digits
 - e.g., `4'd12`, `4'b1100`, `4'hC`
- ❖ Concatenation: `{sig, ..., sig}`
 - Ordering matters; result will have combined widths of all signals
- ❖ Replication operator: `{n{m}}`
 - repeats value m, n times

Verilog “control flow”

- ❖ Verilog has synthesizable **if** and **case** statements
 - In hardware, each “clause” exists in parallel and is always computing its output whether the condition is true or not
 - A **multiplexer (“mux”)** is placed physically after these blocks to electrically connect one of them to the output signal
- ❖ Verilog requires us to wrap these statements in an **always_comb block**
 - Block defines the full set of circuits that *may* drive the value on a **logic** variable
 - Idea: the last assignment in an always block to a given variable is the result that gets used
- ❖ There are several other kinds of “**always**” block.
 - We’ll learn about them next week!

Don't Cares

- ❖ Use symbol 'X' to mean it can be either a 0 or 1
 - Make choice to simplify final expression

AB		A	
CD			
		0	1
		0	X
0	0	X	0
1	1	X	1
1	1	0	0
0	X	0	0

B **C** **D**

Let all $X = 0$:

$$F =$$

AB		A	
CD			
		0	1
		0	X
0	0	X	0
1	1	X	1
1	1	0	0
0	X	0	0

B **C** **D**

Let all $X = 1$:

$$F =$$

AB		A	
CD			
		0	1
		0	X
0	0	X	0
1	1	X	1
1	1	0	0
0	X	0	0

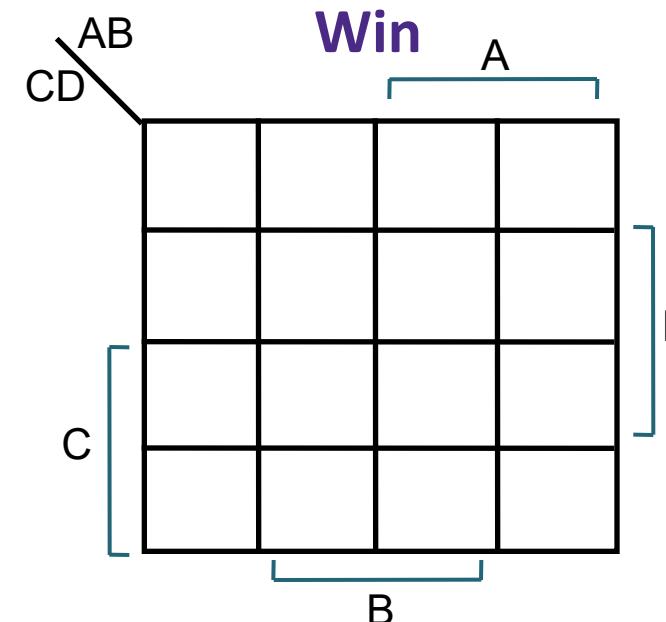
B **C** **D**

Choose wisely:

$$F =$$

Exercise for the reader: Rock-Paper-Scissors

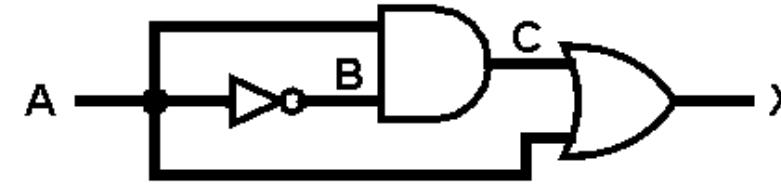
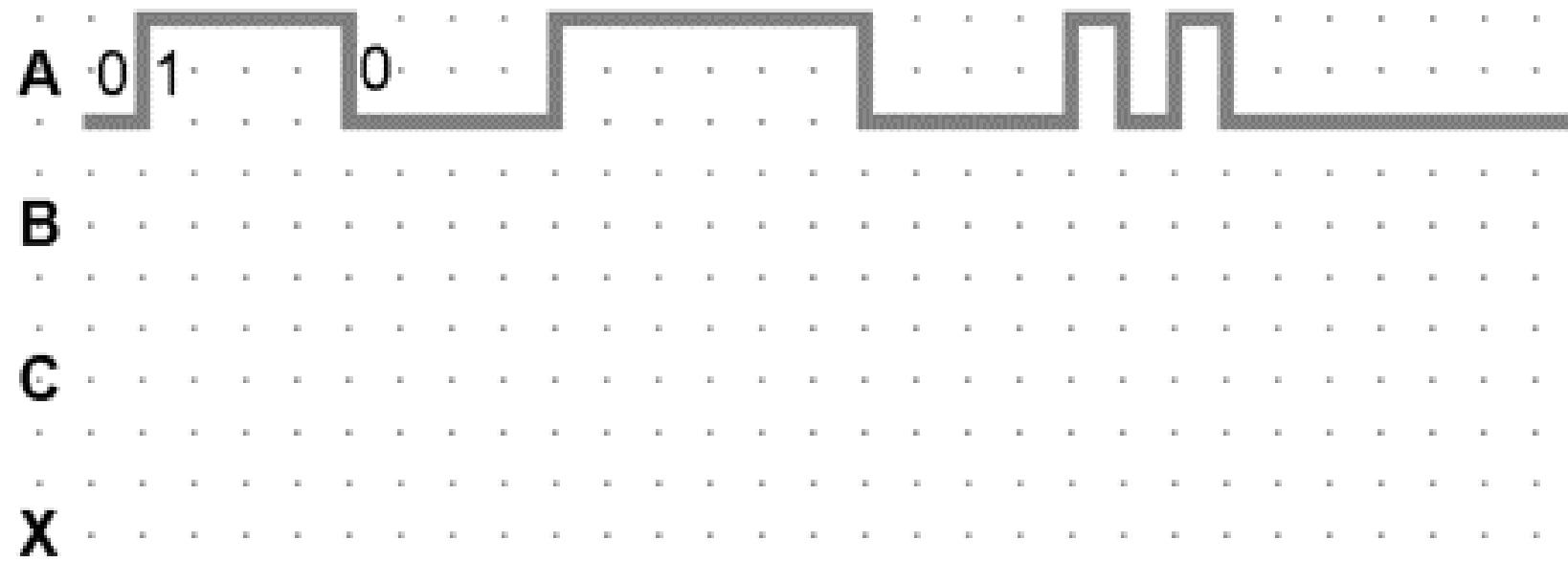
- ❖ Rock (00), Paper (01), Scissors (10)
for two players P0 and P1
- ❖ **Output:** Win = Winner's ID (0/1)
Tie = 1 if Tie, 0 else



		P1		P0			
		A	B	C	D	Win	Tie
0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0
0	0	0	1	1	0	0	0
0	0	0	1	1	1	0	0
0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0
0	1	0	1	1	0	0	0
0	1	0	1	1	1	0	0
1	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0
1	0	0	1	1	0	0	0
1	0	0	1	1	1	0	0
1	1	0	0	0	0	0	0
1	1	0	0	0	1	0	0
1	1	0	1	1	0	0	0
1	1	0	1	1	1	0	0
1	1	1	1	1	1	1	1

Exercise for the reader: Circuit hazards

- ❖ Let the CL delays be 1 tick (NOT) and 3 ticks (AND, OR). How many ticks is the signal X high?



Exercise for the reader: Verilog Signals

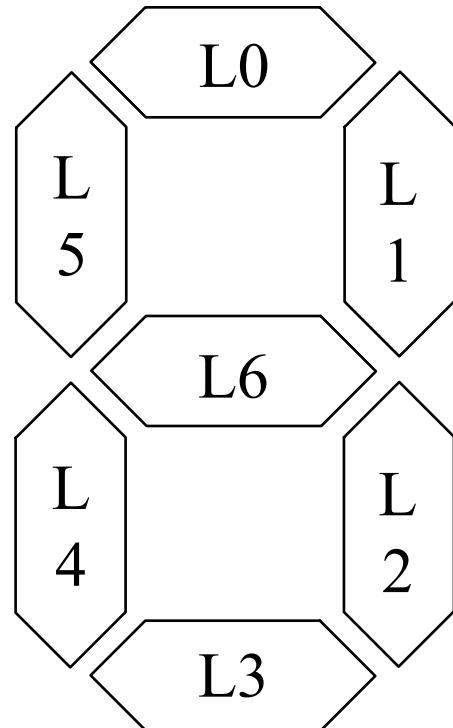
```
logic [4:0] apple;
logic [3:0] pear;
logic [9:0] orange;
assign apple = 5'd20;
assign pear = {1'b0, apple[2:1], apple[4]};
```

- ❖ What's the value of pear?
- ❖ If we want orange to be the *sign-extended* version of apple, what is the appropriate Verilog statement?

```
assign orange =
```

Exercise for the reader: Extend 7-Seg to Hex

- ❖ Show “A” on 0b1010 (ten) to “F” on 0b1111 (fifteen)



```
module seg7_hex (bcd, leds);
  input logic [3:0] bcd;
  output logic [6:0] leds;

  always_comb
    case (bcd)
      // 3210          6543210
      4'b0000: leds = 7'b0111111;
      4'b0001: leds = 7'b0000110;
      4'b0010: leds = 7'b1011011;
      4'b0011: leds = 7'b1001111;
      4'b0100: leds = 7'b1100110;
      4'b0101: leds = 7'b1101101;
      4'b0110: leds = 7'b1111101;
      4'b0111: leds = 7'b0000111;
      4'b1000: leds = 7'b1111111;
      4'b1001: leds = 7'b1101111;
      // TODO: What else??
      default: leds = 7'bX;
    endcase
endmodule
```