
CSE369, Winter 2026L2: More CL, Verilog Basics

Intro to Digital Design
L2: More CL, Verilog Basics

Instructor: Naomi Alterman

Teaching Assistants:

Derek de Leuw Isabel Froelich

Kevin Hernandez Sathvik Kanuri

Aadithya Manoj

CSE369, Winter 2026L2: More CL, Verilog Basics

Administrivia

❖ Lab demo time slots have been assigned on Canvas

▪ Check the comment on the “Demo Time Slot” assignment

❖ Lab 1 & 2 – Basic Logic and Verilog

▪ Digit(s) recognizer using switches and LED (for full credit, find minimal logic)

▪ Check the lab report requirements closely

❖ We’re out of lab kits, but we’ve ordered more.

▪ Just keep doing your lab anyway – we’ll get you a kit soon!

▪ For now, you can hardware test on LabsLand

▪ Can use loaner FPGA for your lab demo time

2

https://edstem.org/us/courses/90073/discussion/7495382

CSE369, Winter 2026L2: More CL, Verilog Basics

When last we left off…
Combinational Logic

3

CSE369, Winter 2026L2: More CL, Verilog Basics

Basic Boolean Identities

❖ X + 0 = X

❖ X + 1 = 1

❖ X + X = X

❖ X + ഥX = 1

❖
ഥഥX = X

4

❖ X ⋅ 1 = X

❖ X ⋅ 0 = 0

❖ X ⋅ X = X

❖ X ⋅ ഥX = 0

CSE369, Winter 2026L2: More CL, Verilog Basics

❖ Terms of equation come from rows of table

▪ For 1, write variable name

▪ For 0, write complement of variable

❖ Sum of Products (SoP)

▪ From CSE311, “DNF” (disjunctive normal form)

▪ Take truth table rows that output 1:
• AND the inputs together, OR the rows together

❖ Product of Sums (PoS)

▪ From CSE311, “CNF” (conjunctive normal form)

▪ Take truth table rows that output 0:
• OR the complemented inputs together, AND the rows together

Translating between Truth Tables and Boolean Equations

5

a b c
0 0 0
0 1 1
1 0 1
1 1 0

SoP: C = ഥAB + ഥBA

PoS: C = A + B ⋅ ഥA + ഥB

CSE369, Winter 2026L2: More CL, Verilog Basics

Basic Boolean Algebra Laws

❖ Commutative Law:
X + Y = Y + X X ⋅ Y = Y ⋅ X

❖ Associative Law:
X+(Y+Z) = (X+Y)+Z X ⋅ Y ⋅ Z = X ⋅ Y ⋅ Z

❖ Distributive Law:
X⋅(Y+Z) = X⋅Y+X⋅Z X+YZ = (X+Y)⋅(X+Z)

6

CSE369, Winter 2026L2: More CL, Verilog Basics

Advanced Laws (Absorption)

❖ X + XY

❖ XY + XഥY

❖ X + ഥXY

❖ X X + Y

❖ X + Y X + ഥY

❖ X ഥX + Y

7

= X

= X

= X + Y

= X

= X

= XY

CSE369, Winter 2026L2: More CL, Verilog Basics

Practice Problem

❖ Boolean Function: F = ഥXYZ + XZ

 Truth Table: Simplification:

 = ഥXYZ + XഥYZ + XYZ

 = ഥXYZ + XZ

 = ഥXY + X Z

 = X + Y Z

 = XZ + YZ

8

X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Which of these
is “simpler”?

CSE369, Winter 2026L2: More CL, Verilog Basics

Are Logic Gates Created Equal?

❖ No!

❖ Can recreate all other gates using only NAND or only NOR gates

▪ Called “universal” gates

▪ e.g., A NAND A = ഥA, B NOR B = ഥB

▪ DeMorgan’s Law helps us here!

9

2-Input Gate Type # of CMOS transistors

NOT 2

AND 6

OR 6

NAND 4

NOR 4

XOR 8

XNOR 8

CSE369, Winter 2026L2: More CL, Verilog Basics

Logic minimization

❖ Reduce complexity at gate level

▪ Allows us to build smaller and faster hardware

▪ Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of
logic gates

10

CSE369, Winter 2026L2: More CL, Verilog Basics

Logic minimization

❖ Reduce complexity at gate level

▪ Allows us to build smaller and faster hardware

▪ Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of
logic gates

❖ Faster hardware?
▪ Fewer inputs implies faster gates in some technologies

▪ Fan-ins (# of gate inputs) are limited in some technologies

▪ Fewer levels of gates implies reduced signal propagation delays

▪ # of gates (or gate packages) influences manufacturing costs

▪ Simpler Boolean expressions → smaller transistor networks → smaller circuit delays
→ faster hardware

11

CSE369, Winter 2026L2: More CL, Verilog Basics

DeMorgan’s Law

❖ X + Y = ഥX ⋅ ഥY

❖ X ⋅ Y = ഥX + ഥY

❖ In Boolean Algebra, converts between AND-OR and OR-AND expressions

▪ Z = ഥAഥBC + ഥABC + AഥBC

▪ തZ = A + B + തC ⋅ A + ഥB + തC ⋅ ഥA + B + തC

❖ At gate level, can convert from AND/OR to NAND/NOR gates
▪ “Flip” all input/output bubbles and “switch” gate

12

X Y ഥX ഥY X + Y ഥX ⋅ ഥY X ⋅ Y ഥX + ഥY
0 0 1 1 1 1
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 0 0

NOR NAND

⟺ ⟺

CSE369, Winter 2026L2: More CL, Verilog Basics

DeMorgan’s Law Practice Problem

❖ Simplify the following diagram:

 X = A + B + AഥB + തCഥD

 X = ഥAഥB + AഥB + തCഥD

 X = ഥB + തCഥD

 X = ഥB + C + D

 𝑋 = 𝐵 𝐶 + 𝐷

❖ Then implement with only NAND gates:

13

1) 2) 3)

CSE369, Winter 2026L2: More CL, Verilog Basics

Our three forms

16

Circuit
Diagram

Truth
Table

Boolean
Expression

This is difficult to do
efficiently!

Try all input combinations

CSE369, Winter 2026L2: More CL, Verilog Basics

Miso Moment

17

CSE369, Winter 2026L2: More CL, Verilog Basics

Lecture Outline

❖ Combinational Logic (cont’d from L1)

❖ Thinking About Hardware

❖ Verilog Basics

❖ Debugging, Simulations and Waveform Diagrams

18

CSE369, Winter 2026L2: More CL, Verilog Basics

Verilog

❖ A hardware description language (HDL)

▪ Define circuit schematics using text editors

▪ Simulate behavior before (wasting time) implementing

▪ Find bugs early

❖ Syntax is like C/C++/Java, but meaning is very different

▪ Borrows heavily from early concurrency-focused languages like Modula

▪ VHDL (the other major HDL) is more similar to ADA

❖ Modern version is SystemVerilog

▪ Superset of previous; cleaner and more efficient

19

CSE369, Winter 2026L2: More CL, Verilog Basics

Verilog: Hardware Descriptive Language

❖ Although it looks like code:

20

❖ Keep the hardware in mind:

module myModule (F, A, B, C);
 output logic F;
 input logic A, B, C;
 logic AN, AB, AC;

 nand gate1(AB,AN, B);
 nand gate2(AC, A, C);
 nand gate3(F,AB,AC);
 not not1(AN, A);
endmodule

CSE369, Winter 2026L2: More CL, Verilog Basics

Verilog Primitives

❖ Nets: carry bits from one gate to another

▪ SystemVerilog type: “wire”

▪ Think of it like an immutable reference to mutable data in C++

❖ Variables: like a net, but the circuit setting the voltage can change

▪ SystemVerilog type: “reg” or “logic”

▪ NB: nothing to do with “registers” from Assembly () !

▪ “Variable” refers to the source of the data, not the data itself (“driving the
voltage”)

▪ Think of it like a pointer whose location is determined by a switch case in C++

❖ …In this class, we’ll just use “logic” for everything

21

CSE369, Winter 2026L2: More CL, Verilog Basics

Verilog Primitives

❖ Logic Values

▪ 0 = zero, low, FALSE

▪ 1 = one, high, TRUE

▪ X = unknown, uninitialized, contention (conflict)

▪ Z = floating (disconnected), high impedance

22

CSE369, Winter 2026L2: More CL, Verilog Basics

Verilog Primitives

❖ Gates:

❖ Modules: “classes” in Verilog that define blocks

▪ Input: Signals passed from outside to inside of block

▪ Output: Signals passed from inside to outside of block

23

Gate Verilog Syntax

NOT a ~a

a AND b a & b

a OR b a | b

a NAND b ~(a & b)

a NOR b ~(a | b)

a XOR b a ^ b

a XNOR b ~(a ^ b)

CSE369, Winter 2026L2: More CL, Verilog Basics

Verilog Execution

❖ Physical wires transmit voltages (electrons) near-instantaneously

▪ Wires by themselves have no notion of sequential execution

❖ Gates and modules are constantly performing computations

▪ Can be hard to keep track of!

❖ In pure hardware, there is no notion of initialization

▪ A wire that is not driven by a voltage will naturally pick up a voltage from the
environment

❖ In pure hardware, there is no notion of reassignment

▪ Verilog variables represent physical wires. The value carried by the wire can
change, but the wire’s endpoints do not

24

CSE369, Winter 2026L2: More CL, Verilog Basics

Lecture Outline

❖ Combinational Logic (cont’d from L1)

❖ Thinking About Hardware

❖ Verilog Basics

❖ Debugging, Simulations and Waveform Diagrams

25

CSE369, Winter 2026L2: More CL, Verilog Basics

Structural Verilog

// Verilog code for AND-OR-INVERT gate

module AOI (F, A, B, C, D);
 output logic F;
 input logic A, B, C, D;

 assign F = ~((A & B) | (C & D));
endmodule

// end of Verilog code

26

Block Diagram:

AOI F
C

B

A

D

CSE369, Winter 2026L2: More CL, Verilog Basics

Verilog Wires

27

// Verilog code for AND-OR-INVERT gate

module AOI (F, A, B, C, D);
 output logic F;
 input logic A, B, C, D;
 logic AB, CD, O; // now necessary

 assign AB = A & B;
 assign CD = C & D;
 assign O = AB | CD;
 assign F = ~O;
endmodule

CSE369, Winter 2026L2: More CL, Verilog Basics

Verilog Gate Level

28

// Verilog code for AND-OR-INVERT gate

module AOI (F, A, B, C, D);
 output logic F;
 input logic A, B, C, D;
 logic AB, CD, O; // now necessary

 and a1(AB, A, B);
 and a2(CD, C, D);
 or o1(O, AB, CD);
 not n1(F, O);
endmodule

assign AB = A & B;
assign CD = C & D;
assign O = AB | CD;
assign F = ~O;

was:

CSE369, Winter 2026L2: More CL, Verilog Basics

Verilog Hierarchy

// Verilog code for 2-input multiplexer

module AOI (F, A, B, C, D);
 output logic F;
 input logic A, B, C, D;

 assign F = ~((A & B)|(C & D));
endmodule

module MUX2 (V, SEL, I, J); // 2:1 multiplexer
 output logic V;
 input logic SEL, I, J;
 logic SELN, VN;

 not G1 (SELN, SEL);
 AOI G2 (.F(VN), .A(I), .B(SEL), .C(SELN), .D(J));
 not G3 (V, VN);
endmodule

29

2-input MUX

CSE369, Winter 2026L2: More CL, Verilog Basics

Miso Moment

30

CSE369, Winter 2026L2: More CL, Verilog Basics

Lecture Outline

❖ Combinational Logic (cont’d from L1)

❖ Thinking About Hardware

❖ Verilog Basics

❖ Debugging, Simulations and Waveform Diagrams

31

CSE369, Winter 2026L2: More CL, Verilog Basics

Using an FPGA

32

// Verilog code for 2-input

multiplexer

module AOI (F, A, B, C, D);

 output F;

 input A, B, C, D;

 assign F = ~((A & B) | (C &

D));

endmodule

module MUX2 (V, SEL, I, J); //

2:1 multiplexer

 output V;

 input SEL, I, J;

 wire SELB, VB;

 not G1 (SELB, SEL);

 AOI G2 (VB, I, SEL, SELB, J);

 not G3 (V, VB);

endmodule

// Verilog code for 2-input

multiplexer

module AOI (F, A, B, C, D);

 output F;

 input A, B, C, D;

 assign F = ~((A & B) | (C &

D));

endmodule

module MUX2 (V, SEL, I, J); //

2:1 multiplexer

 output V;

 input SEL, I, J;

 wire SELB, VB;

 not G1 (SELB, SEL);

 AOI G2 (VB, I, SEL, SELB, J);

 not G3 (V, VB);

endmodule

// Verilog code for 2-input

multiplexer

module AOI (F, A, B, C, D);

 output F;

 input A, B, C, D;

 assign F = ~((A & B) | (C &

D));

endmodule

module MUX2 (V, SEL, I, J); //

2:1 multiplexer

 output V;

 input SEL, I, J;

 wire SELB, VB;

 not G1 (SELB, SEL);

 AOI G2 (VB, I, SEL, SELB, J);

 not G3 (V, VB);

endmodule

// Verilog code for 2-input

multiplexer

module AOI (F, A, B, C, D);

 output logic F;

 input logic A, B, C, D;

 assign F = ~((A & B) | (C &

D));

endmodule

module MUX2 (V, SEL, I, J); //

2:1 multiplexer

 output logic V;

 input logic SEL, I, J;

 logic SELB, VB;

 not G1 (SELB, SEL);

 AOI G2 (VB, I, SEL, SELB, J);

 not G3 (V, VB);

endmodule

Verilog

FPGA

CAD

Tools

00101010001010010

10010010010011000

10101000101011000

10101001010010101

00010110001001010

10101001111001001

01000010101001010

10010010000101010

10100101010010100

01010110101001010

01010010100101001

Bitstream

Simulation

CSE369, Winter 2026L2: More CL, Verilog Basics

Testbenches

❖ ModelSim is a digital logic simulator

▪ Runs entirely on your computer and simulates the operation of your FPGA

▪ Used for debugging the internals of buggy Verilog
• No such thing as printf() in a physical circuit (at least not without microscopic tweezers)

❖ Testbench – a Verilog module that instantiates the circuit you’re testing
and provides a lil script to generate fake input signals

▪ We need to mockup fake signals for every input to our module, and the timing of
how they change.

▪ Doesn’t/can’t get synthesized

▪ You need a testbench for every single module you write. Period.

33

CSE369, Winter 2026L2: More CL, Verilog Basics

Verilog Testbenches

module MUX2_tb ();
 logic SEL, I, J; // variables remember values
 logic V; // acts as net for reading output

 initial // build stimulus (test vectors)
 begin // start of "block" of code
 SEL = 1; I = 0; J = 0; #10; // t=0: S=1, I=0, J=0 -> V=0
 I = 1; #10; // t=10: S=1, I=1, J=0 -> V=1
 SEL = 0; #10; // t=20: S=0, I=1, J=0 -> V=0
 J = 1; #10; // t=30: S=0, I=1, J=1 -> V=1
 end // end of "block" of code

 MUX2 dut (.V, .SEL, .I, .J);

endmodule // MUX2_tb

34

“Device Under Test”

No ports

CSE369, Winter 2026L2: More CL, Verilog Basics

35

CSE369, Winter 2026L2: More CL, Verilog Basics

Signals and Waveforms

❖ Signals transmitted over wires continuously

▪ Transmission is effectively instantaneous
(a wire can only contain one value at any given time)

▪ In digital system, a wire holds either a 0 (low voltage) or 1 (high voltage)

36

Stack multiple signals in
same waveform diagram
vertically (syncing times)

0 1

CSE369, Winter 2026L2: More CL, Verilog Basics

Signal Grouping

37

A group of wires when
interpreted as a bit field
is called a bus

X

“undefined” (unknown) signal

CSE369, Winter 2026L2: More CL, Verilog Basics

Circuit Timing Behavior

❖ Simple Model: Gates “react” after fixed delay

❖ Example: Assume delay of all gates is 1 ns (= 3 ticks)

38

#3
#3

#3

CSE369, Winter 2026L2: More CL, Verilog Basics

Circuit Timing: Hazards/Glitches

❖ Circuits can temporarily go to incorrect states!
▪ Assume 1 ns delay (3 ticks) for all gates

39

CSE369, Winter 2026L2: More CL, Verilog Basics

Summary

❖ Verilog is a hardware description language (HDL) used to program your
FPGA

▪ Programmatic syntax used to describe the connections between gates and
registers

❖ Waveform diagrams used to track intermediate signals as information
propagates through CL

❖ Hardware debugging is a critical skill

▪ Similar to debugging software, but using different tools

40

	Slide 1: Intro to Digital Design L2: More CL, Verilog Basics
	Slide 2: Administrivia
	Slide 3
	Slide 4: Basic Boolean Identities
	Slide 5: Translating between Truth Tables and Boolean Equations
	Slide 6: Basic Boolean Algebra Laws
	Slide 7: Advanced Laws (Absorption)
	Slide 8: Practice Problem
	Slide 9: Are Logic Gates Created Equal?
	Slide 10: Logic minimization
	Slide 11: Logic minimization
	Slide 12: DeMorgan’s Law
	Slide 13: DeMorgan’s Law Practice Problem
	Slide 16: Our three forms
	Slide 17
	Slide 18: Lecture Outline
	Slide 19: Verilog
	Slide 20: Verilog: Hardware Descriptive Language
	Slide 21: Verilog Primitives
	Slide 22: Verilog Primitives
	Slide 23: Verilog Primitives
	Slide 24: Verilog Execution
	Slide 25: Lecture Outline
	Slide 26: Structural Verilog
	Slide 27: Verilog Wires
	Slide 28: Verilog Gate Level
	Slide 29: Verilog Hierarchy
	Slide 30
	Slide 31: Lecture Outline
	Slide 32: Using an FPGA
	Slide 33: Testbenches
	Slide 34: Verilog Testbenches
	Slide 35
	Slide 36: Signals and Waveforms
	Slide 37: Signal Grouping
	Slide 38: Circuit Timing Behavior
	Slide 39: Circuit Timing: Hazards/Glitches
	Slide 40: Summary

