WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Intro to Digital Design
L2:

Instructor: Naomi Alterman

Teaching Assistants:

Derek de Leuw Isabel Froelich
Kevin Hernandez Sathvik Kanuri
Aadithya Manoj

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Administrivia

+» Lab demo time slots have been assigned on Canvas

" Check the comment on the “Demo Time Slot” assignment

+» Lab 1 & 2 — Basic Logic and Verilog
= Digit(s) recognizer using switches and LED (for full credit, find minimal logic)
" Check the lab report requirements closely

+» We’re out of lab kits, but we’ve ordered more.
= Just keep doing your lab anyway — we’ll get you a kit soon!
" For now, you can hardware test on LabslLand

® Can use loaner FPGA for your lab demo time

https://edstem.org/us/courses/90073/discussion/7495382

WA/ UNIVERSITY of WASHINGTON

When last we left off...

Combinational Logic

CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON

Basic Boolean Identities
«»X+0=X
+X+1=1
» X+ X=X

»X+X=1

L/
0’0

=X

L2: More CL, Verilog Basics

@,
0’0

/)
0.0

)
0‘0

< X X X

X< o

<

<

-

<

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Translating between Truth Tables and Boolean Equations

+» Terms of equation come from rows of table SoP: C = AB + BA
" For 1, write variable name PoS:C=(A+B)-(A+B)
"= For 0, write complement of variable

% Sum of Products (SoP)

" From CSE311, “DNF” (disjunctive normal form)
= Take truth table rows that output 1:
- AND the inputs together, OR the rows together

% Product of Sums (PoS)

" From CSE311, “CNF” (conjunctive normal form)

= Take truth table rows that output O:
« OR the complemented inputs together, AND the rows together

2

@il (o] [e)

NINI=
~[o|l~|lo]lo

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics

CSE369, Winter 2026

Basic Boolean Algebra Laws

+ Commutative Law:
X+4Y=Y+X X-Y=Y-X

+ Associative Law:
X+(Y+Z) = (X+Y)+Z X-(Y-Z)=(X-Y)-Z

« Distributive Law:
X-(Y+7Z) =X-Y+X-Z X+YZ = (X+Y)-(X+Z)

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Advanced Laws (Absorption)
» X+ XY =X

« XY + XY =X

» X+ XY =X+Y

+ X(X+Y) =X

s X+Y)X+Y) =X

+ X(X+Y) = XY

WA/ UNIVERSITY of WASHINGTON

Practice Problem

L2: More CL, Verilog Basics

+ Boolean Function: F = XYZ + XZ

Truth Table:
X Y 2| F
O O O
O 0 1
O 1 O
O 1 1
1 0 O
1 0 1
1 1 O
1 1 1

Simplification:

= XYZ + XYZ + XYZ
= XYZ + XZ

= (XY + X)Z

= (X+Y)Z
=XZ+YZ

J

Which of these
is “simpler”?

CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics

CSE369, Winter 2026

Are Logic Gates Created Equal?

<« NO ' 2-Input Gate Type # of CMOS transistors
NOT
AND
OR
NAND
NOR
XOR
XNOR

|||l |N

+» Can recreate all other gates using only NAND or only NOR gates

IH

= Called “universal” gates
= eg, ANANDA=A, BNORB=B

= DeMorgan’s Law helps us here!

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Logic minimization

+» Reduce complexity at gate level
= Allows us to build smaller and faster hardware

= Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of
logic gates

10

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Logic minimization

+» Reduce complexity at gate level

Allows us to build smaller and faster hardware

Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of
logic gates

« Faster hardware?

Fewer inputs implies faster gates in some technologies

Fan-ins (# of gate inputs) are limited in some technologies
Fewer levels of gates implies reduced signal propagation delays
of gates (or gate packages) influences manufacturing costs

Simpler Boolean expressions = smaller transistor networks — smaller circuit delays
— faster hardware

11

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

DeMorgan’s Law

~_ _NOR NAND

XY XYK+Y X-Y|X-Y X+Y
I 001 1| 1 1
X+Y__XY_ 0110]| o 1
» XY =X+Y 100 1] O 1
1100] o 0

- In Boolean Algebra, converts between AND-OR and OR-AND expressions
= 7 = ABC + ABC + ABC
= 7=(A+B+C0-(A+B+C)-(A+B+0C)

= At gate level, can convert from AND/OR to NAND/NOR gates
= “Flip” all input/output bubbles and “switch” gate

12

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

DeMorgan’s Law Practice Problem

+ Simplify the following diagram:

A X=A+B+AB+CD

. X=AB+AB+CD
X X=B+0CD

C X=B+C+D

D X = B(C + D)

+» Then implement with only NAND gates:

1) 2)
B B B
CES ‘ JO— X CﬁD)—X C X
D D
D

13

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Our three forms

Try all input combinations

This is difficult to do

Circuit efficiently!

Diagram

16

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Miso Moment

17

CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics

Lecture Outline

+» Combinational Logic (cont’d from L1)

+» Thinking About Hardware

+ Verilog Basics

+» Debugging, Simulations and Waveform Diagrams

18

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Verilog

+» A hardware description language (HDL)
= Define circuit schematics using text editors
= Simulate behavior before (wasting time) implementing
" Find bugs early

+» Syntax is like C/C++/Java, but meaning is very different

= Borrows heavily from early concurrency-focused languages like Modula
= VHDL (the other major HDL) is more similar to ADA

+» Modern version is SystemVerilog

= Superset of previous; cleaner and more efficient

19

WA/ UNIVERSITY of WASHINGTON

L2: More CL, Verilog Basics

Verilog: Hardware Descriptive Language

+ Although it looks like code:

module myModule (F, A, B, C);
output logic F;
input logic A, B, C;
logic AN, AB, AC;

nand gatel(AB,AN, B);

nand gate2(AC, A, C);

nand gate3(F,AB,AC);

not notl (AN, A);
endmodule

CSE369, Winter 2026

+ Keep the hardware in mind:

v

Db
DOJ_

E[x)

"

)o—®

%ﬂ%ﬂodue

20

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Verilog Primitives

+ Nets: carry bits from one gate to another
= SystemVerilog type: “wire”
" Think of it like an immutable reference to mutable data in C++

+» Variables: like a net, but the circuit setting the voltage can change
= SystemVerilog type: “reg” or “logic”
"= NB: nothing to do with “registers” from Assembly (®) !

= “Variable” refers to the source of the data, not the data itself (“driving the
voltage”)

" Think of it /ike a pointer whose location is determined by a switch case in C++

% ...In this class, we’ll just use “logic” for everything

21

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics

Verilog Primitives

+ Logic Values
= 0=zero, low, FALSE
" 1 =o0ne, high, TRUE
= X = unknown, uninitialized, contention (conflict)
= Z =floating (disconnected), high impedance

CSE369, Winter 2026

22

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Verilog Primitives

<« @Gates: Gate Verilog Syntax

NOT a ~a

a AND b a &b
aORb a| b
a NAND b ~(a & b)
a NOR b ~(a | b)
a XOR b a b
a XNOR b ~(a M b)

+» Modules: “classes” in Verilog that define blocks
" |nput: Signals passed from outside to inside of block
" Qutput: Signals passed from inside to outside of block

23

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Verilog Execution

Physical wires transmit voltages (electrons) near-instantaneously

>

= Wires by themselves have no notion of sequential execution

+» Gates and modules are constantly performing computations
" Can be hard to keep track of!

» In pure hardware, there is no notion of initialization

= A wire that is not driven by a voltage will naturally pick up a voltage from the
environment

+ In pure hardware, there is no notion of reassignment

= Verilog variables represent physical wires. The value carried by the wire can
change, but the wire’s endpoints do not

24

CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics

Lecture Outline

+» Combinational Logic (cont’d from L1)

+ Thinking About Hardware

+ Verilog Basics

+» Debugging, Simulations and Waveform Diagrams

25

WA/ UNIVERSITY of WASHINGTON

L2: More CL, Verilog Basics

Structural Verilog

O O o F

Block Diagram:

A—>
B——>

C—>

D=

AOI

// Verilog code for AND-OR-INVERT gate

module AOI (F, A, B, C, D);

output logic F;

input logic A, B, C, D;

assign F = ~((A & B)
endmodule

// end of Verilog code

(C & D));

CSE369, Winter 2026

26

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics

Verilog Wires

AB

O O o F

CD
// Verilog code for AND-OR-INVERT gate

module AOI (F, A, B, C, D);
output logic F;
input logic A, B, C, D;
logic AB, CD, O0; // now necessary

assign AB =
assign CD =
assign 0 = A
assign F
endmodule

b

O O W

)
D3

o wn x>

&
&
|

~y

)

CSE369, Winter 2026

27

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics

Verilog Gate Level

AB

O O o F

CD
// Verilog code for AND-OR-INVERT gate

module AOI (F, A, B, C, D);
output logic F;
input logic A, B, C, D;
logic AB, CD, 0; // now necessary

—

and al(AB, A, B); assign AB = A & B;
and a2(Cb, C, D); ’_\Nas.assign CD = C & D;
or o01(0, AB, CD); "assign 0 = AB | CD;
not nl1(F, 0); assign F = ~0;

endmodule

CSE369, Winter 2026

28

WA/ UNIVERSITY of WASHINGTON

Verilog Hierarchy

L2: More CL, Verilog Basics

// Verilog code for 2-input multiplexer

module AOI (F, A, B, C, D);

output logic F;

input logic A, B, C, D;

assign F = ~((A & B)|[(C & D));

endmodule

module MUX2 (V, SEL, I, J);

output logic V;

input logic SEL, I, 3J;

logic SELN, VN;

not Gl1 (SELN, SEL);

AOI G2 (.F(VN),
not G3 (V, VN);
endmodule

-A(I),

.B(SEL),

.C(SELN),

2-input MUX

] —

AO| o—v

// 2:1 multiplexer

.D(3));

CSE369, Winter 2026

29

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Miso Moment

30

CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics

Lecture Outline

+» Combinational Logic (cont’d from L1)

+ Thinking About Hardware

+ Verilog Basics

+~ Debugging, Simulations and Waveform Diagrams

31

WA/ UNIVERSITY of WASHINGTON

L2: More CL, Verilog Basics

CSE369, Winter 2026

Using an FPGA

2

// Verilog code for 2-input
multiplexer

module AOI (F, A, B, C, D);
output logic F:
input logic A, B, C, D;
assign F = ~((& & B) | (C &
D));
endnodule
module MUX2 (V, SEL, I, J): //

:1 multiplexer

output logic Vi
input logic SEL, I, J;
logic SELB, VB;

not Gl
ROI G2 (VB, I,
not G3 (v, VB);

SEL, SELB, J);

endmodule

Verilog

FPGA
CAD
Tools

sbppiiricijofofe]e!

)

00101010001010010
10010010010011000
10101000101011000
10101001010010101
00010110001001010
10101001111001001
01000010101001010
10010010000101010
10100101010010100
01010110101001010
01010010100101001

Bitstream

32

WA/ UNIVERSITY of WASHINGTON

L2: More CL, Verilog Basics

CSE369, Winter 2026

Testbenches

+» ModelSim is a digital logic simulator

= Runs entirely on your computer and simulates the operation of your FPGA
= Used for debugging the internals of buggy Verilog

« No such thing as printf() in a physical circuit (at least not without microscopic tweezers)

+» Testbench — a Verilog module that instantiates the circuit you're testing
and provides a lil script to generate fake input signals

= We need to mockup fake signals for every input to our module, and the timing of
how they change.

= Doesn’t/can’t get synthesized

" You need a testbench for every single module you write. Period.

33

WA/ UNIVERSITY of WASHINGTON

endmodule

L2: More CL, Verilog Basics

Verilog Testbenches

Test

{

]

No ports Vectors

/ S

MUX2

module MUX2_tb ();

logic SEL, I, J;

// variables remember values

CSE369, Winter 2026

| w] Results

Anaksis

logic V; // acts as net for reading output
initial // build stimulus (test vectors)
begin // start of "block" of code
SEL = 1; I =03 J = 03 #10; // t=0: S=1, I=0, J=0 ->
I = 1; #10; // t=10: S=1, I=1, J=0 ->
SEL = 0; #10; // t=20: S=0, I=1, J=0 ->
J = 1; #10; // t=30: S=0, I=1, J=1 ->
end // end of "block" of code
“Device Under Test”

«—
MUX2 dut (.V, .SEL, .I, .3J);

// MUX2_tb

1l
N~ O R~ O

NN

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

- Default = 4| & X ‘]Dbjects B 5

¥|Instance

2 MUX2_bad_tb
+ g dut

+-4 std
=X #vsim_capacity#

Afh".lﬂ}

hd |Name

m 13ps I

| - K Y 7 3 |
I Lbrary | sim ¢ »} o | 0 II!] Wave ||] rundemo.do - | ﬂﬂ

35

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Signals and Waveforms

+ Signals transmitted over wires continuously

" Transmission is effectively instantaneous
(a wire can only contain one value at any given time)

" |n digital system, a wire holds either a O (low voltage) or 1 (high voltage)

\ow (o) > time

Stack multiple signals in
same waveform diagram
vertically (syncing times)

36

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics CSE369, Winter 2026

Signal Grouping

)ﬁ}XZX\XO

A group of wires when
interpreted as a bit field

is called a bus 7}% o
Z

“undefined” (unknown) signal
37

WA/ UNIVERSITY of WASHINGTON L2: More CL, Verilog Basics

Circuit Timing Behavior

+~ Simple Model: Gates “react” after fixed delay
+» Example: Assume delay of all gates is 1 ns (= 3 ticks)

A D
B = F
c
Alo 1
B |1
c o
D
E

CSE369, Winter 2026

38

CSE369, Winter 2026

WA/ UNIVERSITY of WASHINGTON

L2: More CL, Verilog Basics

Circuit Timing: Hazards/Glitches

% Circuits can temporarily go to incorrect states!

= Assume 1 ns delay (3 ticks) for all gates

CAR

PIC

Copilot Autopilot Request B
A
Pilot in Charge?—{ I Autopilot Engaged
Pilot Autopilot Request C
s .
1- - 10 -
1

PAR

AE

39

WA/ UNIVERSITY of WASHINGTON

L2: More CL, Verilog Basics

CSE369, Winter 2026

Summary

+ Verilog is a hardware description language (HDL) used to program your
FPGA

" Programmatic syntax used to describe the connections between gates and
registers

+» Waveform diagrams used to track intermediate signals as information
propagates through CL

+» Hardware debugging is a critical skill

= Similar to debugging software, but using different tools

40

	Slide 1: Intro to Digital Design L2: More CL, Verilog Basics
	Slide 2: Administrivia
	Slide 3
	Slide 4: Basic Boolean Identities
	Slide 5: Translating between Truth Tables and Boolean Equations
	Slide 6: Basic Boolean Algebra Laws
	Slide 7: Advanced Laws (Absorption)
	Slide 8: Practice Problem
	Slide 9: Are Logic Gates Created Equal?
	Slide 10: Logic minimization
	Slide 11: Logic minimization
	Slide 12: DeMorgan’s Law
	Slide 13: DeMorgan’s Law Practice Problem
	Slide 16: Our three forms
	Slide 17
	Slide 18: Lecture Outline
	Slide 19: Verilog
	Slide 20: Verilog: Hardware Descriptive Language
	Slide 21: Verilog Primitives
	Slide 22: Verilog Primitives
	Slide 23: Verilog Primitives
	Slide 24: Verilog Execution
	Slide 25: Lecture Outline
	Slide 26: Structural Verilog
	Slide 27: Verilog Wires
	Slide 28: Verilog Gate Level
	Slide 29: Verilog Hierarchy
	Slide 30
	Slide 31: Lecture Outline
	Slide 32: Using an FPGA
	Slide 33: Testbenches
	Slide 34: Verilog Testbenches
	Slide 35
	Slide 36: Signals and Waveforms
	Slide 37: Signal Grouping
	Slide 38: Circuit Timing Behavior
	Slide 39: Circuit Timing: Hazards/Glitches
	Slide 40: Summary

