Section 7

Common Issues When
Connecting Modules

Administrivia

e Lab 7: Report due next Wednesday (02/26) @ 2:30 pm,
demo by last OH on Friday (02/28), but expected during your assigned

slot.
o Tunable cyber player opponent (counter, LFSR, adder).
e Quiz2: Quiz 2 on Tuesday (02/25)

e Lab 8: Final projectis coming up!

o Choose from 8 possible projects or suggest your own.
o Range of difficulties (and point values).
o Extra credit opportunities for early finish and bonus features!
o See Ed board for midpoint check-in information

General Debugging Tips

SystemVerilog Debugging

e Many things are similar to software debugging!
o Have compiler messages and program output to work with.
o ldentify the behavior(s) that differ from what you expect and work backwards
from there.
o Need to understand data representation and manipulation.

SystemVerilog Debugging

e Many things are similar to software debugging!
o Have compiler messages and program output to work with.
o ldentify the behavior(s) that differ from what you expect and work backwards
from there.
o Need to understand data representation and manipulation.

e However, many things are different in hardware!
o Parallel (instead of sequential) execution makes interpreting programs more
difficult.
m We often rely on simulation waveforms instead of terminal output.
m Timing is always a factor/consideration (e.g., timing delays, sensitivity lists,
blocking vs. non-blocking assignments).
o Can make mistakes between simulation and bit file (e.g., clock_divider).
s

General Debugging Tips

e The best debugging advice is to not have to debug at all!
o Focus on the design (i.e., block diagrams, state diagrams) to avoid impractical
designs and major logical flaws.

General Debugging Tips

e The best debugging advice is to not have to debug at all!
o Focus on the design (i.e., block diagrams, state diagrams) to avoid impractical
designs and major logical flaws.

e Staring at code until you think you spot a bug is generally not an effective

way to debug.

o Of course it looks logically correct to you - you wrote it!
o SystemVerilog is a really tricky language - we've only scratched the surface
and the code often obfuscates the synthesized hardware.

e Instead, lean on the available tools, which are intended to help you.
o We'll cover some tips in the following slides.

Quartus Debugging Tips

e The built-in syntax highlighting can help find typos in keywords (black vs.
blue text) and what is currently commented out (green vs. not green).

e Double-clicking a word will highlight all instances of that word in your
code, making for easier visual scanning and spotting of typos.

e Pay attention to compiler output messages, which usually point out the
problematic line of code!
o Can filter by (1) Errors | @ |, (2) Critical Warnings |4 , and (3) Warnings | & |
o Some common messages and their suggested fixes can be found in our
SystemVerilog Warnings & Errors Doc.

o Double-click a warning or error message to have it automatically take you to
the appropriate point in the code.

https://docs.google.com/document/d/1Etvnj-PRnN582v-uE6GyvP_7pQbCFebsWZlFTRNgTTg/edit?usp=sharing

ModelSim Debugging Tips

e ModelSim has its own compiler so pay attention to output messages here
as well.

e Add internal signals from any instantiated module to your simulation!
o For abuggy signal, add all signals involved in the computation of that signal.

e Make sure you're using the appropriate radix (e.g., binary vs. decimal vs.
unsigned) for that signal’s particular use case.

e Red lines have multiple causes; it's important to identify which is the case

so you can narrow down your fix.
o Undefined signal (e.g., no initialization), net contention (e.g., multiple drivers),
explicit don't carein code (e.g.,, default: leds = 7'bX;).

Debugging Time!

Exercise 1 - Interpreting Messages

e Given the following modules and error messages, identify & fix the bug.

2 module exl (output logic dout, input logic [2:0] upc);
3 assign dout = upc[l] & upc[0O] " upc[2]};
4 endmodule // exl

2 module DE1_SoC (input logic [9:0] SW, output logic [9:0] LEDR);
3 exl el (.dout(LEDR[O]), .upc(SW[1:0]));
4 endmodule // DEI1_SoC

+ 122411 hierarchies have connectivity warnings - see the Connectivity Checks report folder
o 144001 Generated suppressed messages file C:/369/sec7/output_files/DE1l_SoC.map.smsg
»o 16010Generating hard_block partition "hard_block:auto_generated_inst"
so 21057 Implemented 20 device resources after synthesis - the final resource count might be different

>0 Quartus Prime Analysis & Synthesis was successful. 0 errors, 1 warning
Port Connectivity Checks: "ex1:e1"
o <<Filter>>
Port Type Severity Details

1 upc Input Warning Input port expression (2 bits) is smaller than the input port (3 bits) it drives. Extra input bit{s) "upc[2..2]" will be connected to GND,

Exercise 1 (Solution)

e Given the following modules and error messages, identify & fix the bug.

2 module exl (output logic dout, input logic [2:0] upc);
3 assign dout = upc[l] & upc[0O] " upc[2]};
4 endmodule // exl

2 module DE1_SoC (input logic [9:0] SW, output logic [9:0] LEDR);
3 exl el (.dout(LEDR[O]), .upc(SW[2:0])); « changed to [2:0]
4 endmodule // DEI1_SoC

+ 122411 hierarchies have connectivity warnings - see the Connectivity Checks report folder
o 144001 Generated suppressed messages file C:/369/sec//output_files/DE1l_SoC.map.smsg
»o 16010Generating hard_block partition "hard_block:auto_generated_inst"
so 21057 Implemented 20 device resources after synthesis - the final resource count might be different

>0 Quartus Prime Analysis & Synthesis was successful. 0 errors, 1 warning
Port Connectivity Checks: "ex1:e1"
o <<Filter>>

Port Type Severity Details

1 upc Input Warning Input port expression (2 bits) is smaller than the input port (3 bits) it drives. Ettra input bit(s) "upc[2..2]" will be connected to GND,

Exercise 2 - Port Connection Analysis

e Given the modules to the right, analyze
the ports instantiations in ex2
independently.

o Isthere an issue?

o If so, whatis it? Do you think it will
produce a warning or an error?

2 module ports (input logic a,

3
4

5 endmodule

input logic [1:0] b,
output logic c);

// ports

2
3
4
5
6
-
8

9
10
11

module ex2 (input logic a, b, d,
input logic [1:0] e,

ports
ports
ports
ports
ports

output logic c);

optionl
option2
option3
option4
option5

~ AN AN AN A

12 endmodule // ex2

.a,
.a,
c*) 5
.a,
.a,

.C);
.b(e), .

.b(e),
.b(e),

.c, .d);

.c(d));

Exercise 2-1 (Solution)

2 module ports (input logic a,

3 input logic [1:0] b,
4 output logic c);

5 endmodule // ports

e optionl:

module ex2 (input logic a, b, d,
input logic [1:0] e,
output logic c);

ports optionl (.a, .c);
ports option2 (.a, .b(e), .c);
ports option3 (.x);

9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

2
3
4
5
6
7
8

Exercise 2-1 (Solution)

. . 2 module ports (input logic a,
¢ Opt'IOI’]l. 3 input logic [1:0] b,
o Only 2 ports connected to 3-port 4 output logic c);
5 endmodule // ports
module.

o Compiler warning:

2 module ex2 (input logic a, b, d,
3 input logic [1:0] e,
4 output logic c);
A Warning (12241): 1 hierarchies have connectivity warnings - see the 5
Connectivity Checks report folder 6 ports optionl (.a, .c);
7 ports option2 (.a, .b(e), .c);
® Info: Quartus Prime Analysis & Synthesis was successful. 0 errors, 2 8 ports option3 (.x);
warnings 9 ports option4 (.a, .b(e), .c, .d);

N———————————————————————————————————-|——T et YRR T T WO N G G N OSSR Y @ N WEEE

Port Connectivity Checks: "ports:option1”

& <<Fjlter>>

Port Type Severity Details

1 b Input Warning Declared by entity but not connected by instance. If a default value exists, it will be used. Otherwise, the port will be connected to GND.

Exercise 2-2 (Solution)

e option2:

2 module ports (input logic a,
input logic [1:0] b,
output logic c);

3
4

5 endmodule

// ports

2
3
4
5
6
-
8

9
10
11

module ex2 (input logic a, b, d,
input logic [1:0] e,

ports
ports
ports
ports
ports

output logic c);

optionl (.a, .c);

option2 (.a, .b(e), .c);

option3 (.x);
option4 (.a, .b(e),
option5 (.a, .b(e),

12 endmodule // ex2

.c, .d);
.c(d));

Exercise 2-2 (Solution)

e option2:

(@)

(@)

No issues!
Though this is confusing port naming
and is not recommended.

2 module ports (input logic a,
input logic [1:0] b,
output logic c);

3
4

5 endmodule

// ports

2
3
4
5
6
-
8

9
10
11

module ex2 (input logic a, b, d,
input logic [1:0] e,

ports
ports
ports
ports
ports

output logic c);

optionl (.a, .c);

option2 (.a, .b(e), .c);

option3 (.x);
option4 (.a, .b(e),
option5 (.a, .b(e),

12 endmodule // ex2

.c, .d);
.c(d));

Exercise 2-3 (Solution)

2 module ports (input logic a,

3 input logic [1:0] b,
4 output logic c);

5 endmodule // ports

e option3:

module ex2 (input logic a, b, d,
input logic [1:0] e,
output logic c);

ports optionl (.a, .c);

ports option2 (.a, .b(e), .c);
ports option3 (.x);
9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11

12 endmodule // ex2

2
3
4
5
6
-
8

Exercise 2-3 (Solution)

e option3:
o Implicit port connections fails for b
because the types don't match.
o Compiler errors:

2 module ports (input logic a,
input logic [1:0] b,
output logic c);

3
4

5 endmodule

// ports

® Error (10897): SystemVerilog error at ex2.sv(8): can't implicitly connect
port "b" on instance "option3" of module "ports" - matching object in
present scope does not have an equivalent data type

® Error (10784): HDL error at ports.sv(3): see declaration for object "b"
® Error (10784): HDL error at ex2.sv(2): see declaration for object "b"

® Error (12153): Can't elaborate top-level user hierarchy

® Error: Quartus Prime Analysis & Synthesis was unsuccessful. 4 errors,
0 warnings

2
3
4
5
6
-
8

9
10
11

module ex2 (input logic a, b, d,
input logic [1:0] e,

ports
ports
ports
ports
ports

output logic c);

optionl (.a, .c);
option2 (.a, .b(e),
option3 (.x);
option4d (
option5 (.a, .b(e),

12 endmodule // ex2

.c, .d);

.c(d));

Exercise 2-4 (Solution)

e option4:

2 module ports (input logic a,

3 input logic [1:0] b,
4 output logic c);

5 endmodule // ports

module ex2 (input logic a, b, d,
input logic [1:0] e,
output logic c);

ports optionl (.a, .c);
ports option2 (.a, .b(e), .c);
ports option3 (.x);

9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

2
3
4
5
6
-
8

Exercise 2-4 (Solution)

e option4:
o Thereisno d portfor ports (only 3
ports, too).
o Compiler errors:

2 module ports (input logic a,

3 input logic [1:0] b,
4 output logic c);

5 endmodule // ports

® Error (10284): Verilog HDL Module Instantiation error at ex2.sv(9): port
"d" is not declared by module "ports"

® Error: Quartus Prime Analysis & Synthesis was unsuccessful. 1 error, 0
warnings

module ex2 (input logic a, b, d,
input logic [1:0] e,
output logic c);

ports optionl (.a, .c);
ports option2 (.a, .b(e), .c);
ports option3 (.x);

9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

2
3
4
5
6
-
8

Exercise 2-5 (Solution)

2 module ports (input logic a,

3 input logic [1:0] b,
4 output logic c);

5 endmodule // ports

e options:

module ex2 (input logic a, b, d,
input logic [1:0] e,
output logic c);

ports optionl (.a, .c);
ports option2 (.a, .b(e), .c);
ports option3 (.x);

9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

2
3
4
5
6
-
8

Exercise 2-5 (Solution)

e options:
o Multiple drivers: c is an output port for
ports but connected to an input port.
o Compiler errors:

2 module ports (input logic a,

3 input logic [1:0] b,
4 output logic c);

5 endmodule // ports

® Error (10031): Net "d" at ex2.sv(10) is already driven by input port "d",
and cannot be driven by another signal

® Error (10032): "d" was declared at ex2.sv(2)

® Error (12153): Can't elaborate top-level user hierarchy

® Error: Quartus Prime Analysis & Synthesis was unsuccessful. 3 errors,
0 warnings

module ex2 (input logic a, b, d,
input logic [1:0] e,
output logic c);

ports optionl (.a, .c);
ports option2 (.a, .b(e), .c);
ports option3 (.x);

9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

2
3
4
5
6
-
8

Contention on a Net

e Asituation where two or more drivers (sources of signals) are trying to

drive a net to different values at the same time is known as contention.
O This will show up as an X value in simulation, and could result in damage to
the drivers in a physical device!

Contention on a Net

e Asituation where two or more drivers (sources of signals) are trying to

drive a net to different values at the same time is known as contention.
O This will show up as an X value in simulation, and could result in damage to
the drivers in a physical device!

e Example:

module DE1_SoC (input logic [9:0] SW, output logic [6:0] HEX®, HEX1);

seg7 display(.leds(HEX®), .bcd({SW[3], SW[2], SW[1],
SWLO1}));

// Default values, turns off the HEX displays
assign HEXO 7'b1111111;
assign HEX1 7'b1111111;

aloa o ol 1 L L D1 C
A=A AT R AVAV LV By 0wy !/ 7/ UL U

Vad
~

Contention on a Net Example Analysis

module DE1_SoC (input logic [9:0] SW, output logic [6:0] HEX0, HEX1);

seg7 display(.leds(HEX®), .bcd({SW[3], SW[2], SW[1],

MUty swro13)) ;
driven!

F—Pefautt—vatues;—turns off the HEX displays
assign HEX® = 7'biiii111; removethe unnecessary

assign HEX1 7'b1111111; assignment here

oo,] YA Y ik | S oC
CTIOmoT o CO 7/ DT __JUC

® Error (12014): Net "HEXO[6]", which fans out to "HEXO[6]", cannot be assigned more than one value
® Error (12014): Net "HEXO[5]", which fans out to "HEXO[5]", cannot be assigned more than one value
® Error (12014): Net "HEXO[4]", which fans out to "HEX0[4]", cannot be assigned more than one value
® Error (12014): Net "HEXO[3]", which fans out to "HEXO[3]", cannot be assigned more than one value
)
)

® Error (12014): Net "HEXO[2]", which fans out to "HEXO[2]", cannot be assighed more than one value
® Error (12014): Net "HEXO[1]", which fans out to "HEXO[1]", cannot be assigned more than one value
® Error (12014): Net "HEXO[0]", which fans out to "HEXO[Q]", cannot be assigned more than one value

Error (12015): Net is fed by "VCC" these are expanded messages
Error (12015): Net is fed by "seg7:disp|ay|leas[0]" P 5

® Error: Quartus Prime Analxsis & anthesis was unsuccessful. 21 errors, 0 warninﬁs

module child (
input logic clk, 1in,

Example 1 output logic out

)
|dentify the bug in the following code: ,
logic ps, ns;
module parent (always_comb
input logic Clk, 1n, case (ps)
LRSS LOYFIE Gl 1°b0: ns = (in ? 1°bl : 1°b0);
)3 1’bl: ns = (in ? 1’°b0 : 1’bl);
default: = ps;
child ¢ (.Clk, .in, .out); idbat il o
endmodule // parent assign out = ns;

always_ff @(posedge clk)

" ’ H N N ogen ps <: ns;
® Error: Port “Clk" does not exist in macrofunction “f

endmodule // child

*Note that reset is omitted for simplicity
e

Example 1

Clk # clk!

Make sure port connections are sound
(esp. c vs. Cis hard to tell on Quartus)

module parent (
input logic clk, 1in,
output logic out

)3

// alternatively, .clk(Clk)
child ¢ (.clk, .in, .out);

endmodule // parent

module child (
input logic clk, 1in,
output logic out

)5

logic ps, ns;

always_comb
case (ps)
1’b0: ns (in 2 1’°’bl : 1°b0);
1’bl: ns = (in ? 1’b0 : 1°bl);
default: ns = ps;
endcase

assign out = ns;

always_ff @(posedge clk)
ps <= ns;

endmodule // child

*Note that reset is omitted for simplicity

Example 2 module DE1_SoC (

input logic CLOCK_50,
output logic [6:0] HEXO, ..

|dentify the bug in
the following code: ¥

output logic [9:0] SW

// dnstantiate an fsm that lights LEDR[O] on
// when KEY[O] 1is pressed for two frames in a row
fsm f (.clk(CLOCK_50), .in(KEY[O]) .out(LEDR[O]));

endmodule // DE1_SoC

Buggy Simulation:
Sy e Y Y O e Y Y Y e Y Yy O Y Oy B

Example 2 module DE1_SoC (

input logic CLOCK_50,
output logic [6:0] HEXO,
KEYs are Active-Low!
output logic [9:0] SW
Make sure to account for)

hardware realities.
ardware realities // instantiate an fsm that lights LEDR[O] on

// when KEY[O] 1is pressed for two frames 1in a row
fsm f (.clk(CLOCK_50), .in(~KEY[0]) .out(LEDR[O]));

endmodule // DE1_SoC

Correct Simulation:;

1 [y [G N o Y Y Yy Y Y Y o B

Timing Issues

Example 3 - Different Clocks Issue

e Asituation where not all module instances are using the same clock.
e For example, say we have this register A that captures and outputs a 4-bit

input signal:

module A(
input logic clk,
input logic reset,
input logic [3:0] 1in,
output logic [3:0] out);

always_ff @(posedge clk)
if (reset)
out <= 0;
else
out <= 1in;
endmodule // moduleA

module A(

Example 3 - Different Clocks Issue gt Togie ol

input logic reset,
input logic [3:0] 1in,

In the top-level module, we instantiate module A sl Lewle [2e0] @)
twice.
always_ff @(posedge c'lk)

module top_module(if (risif)e-

input logic CLOCK_50, elszu S

input logic reset, Ut <= e

. o . J

nput 10g1§ [3:0] dn, endmodule // moduleA

output logic [3:0] outl, out2

)3

// clock divider

logic [31:0] clock;

clock_divider cdiv (.clock(clk),
.divided_clocks(clock)) ;

A al(.clk(CLOCK_50), .reset, .in, .out(outl));
A a2(.clk(clock[1]), .reset, .in, .out(out2));

endmodule // top_module

Example 3 - Different Clocks Issue

e |[nstance al with the clock 50
e Instance a2 with the divided clock

module top_module(
input logic CLOCK_50,
input logic reset,
input logic [3:0] 1n,
output logic [3:0] outl, out2
)3

// clock divider

logic [31:0] clock;

clock_divider cdiv (.clock(clk),
.divided_clocks(clock)) ;

// al is using a 50Mhz clock

// a2 is using a slower clock with 12.5 MHz

A al(.clk(CLOCK_50), .reset, .in, .out(outl));
A a2(.clk(clock[1]), .reset, .in, .out(out2));

andnadul o / / +Aan il o

module A(
input logic clk,
input logic reset,
input logic [3:0] 1in,
output logic [3:0] out);

always_ff @(posedge clk)
if (reset)
out <= 0;
else
out <= 1n;
endmodule // moduleA

Example 3 - Different Clocks Issue

e This will cause a desynchronization in our system!
e FEasy to miss when going between hardware « sim.

module top_module(
input logic CLOCK_50,
input logic reset,
input logic [3:0] 1n,
output logic [3:0] outl, out2
)3

// clock divider

logic [31:0] clock;

clock_divider cdiv (.clock(clk),
.divided_clocks(clock)) ;

// al is using a 50Mhz clock

// a2 is using a slower clock with 12.5 MHz

A al(.clk(CLOCK_50), .reset, .in, .out(outl));
A a2(.clk(clock[1]), .reset, .in, .out(out2));

andnadul o / / +Aan il o

module A(
input logic clk,
input logic reset,
input logic [3:0] 1in,
output logic [3:0] out);

always_ff @(posedge clk)
if (reset)
out <= 0;
else
out <= 1n;
endmodule // moduleA

Different Clocks Issue (Simulation)

Output of the module A that does not use divided clock (50 MHz clock)

9 [top_module_th/dut/fre
£ ftop_module_th/dut/ir
£3-“< /top_module_tb/ jutiout1

Output of the module A that does use divided clock (12.5 MHz clock)

Different Clocks Issue (Simulation)
Let's take a closer look at the clock in each module

— a1(dk)

£ ftop_module_th/dut, al/dk

4 ftop_module_th/dutfalfreset
O£ ftop_module_th/dut/alfin
0-*a [top_module_th/dutfalfout
— a2(divided dk)

4 [top_module_th/dut, a2/dk

% Mtop_modue_thjaut/alreset

IE Cursor 1 Ops

The clocks in module a1 and a2 have different clock frequency. Module a2
has a slower clock than al does, causing desynchronization issue.

Different Clocks Issue (Simulation)

Using the same clock!

[top_module _th)/dut/dk
ftop_module_th/dutjreset

+) 4 [top_module_th/dutjout2

module top_module(...);

A al(.clk(CLOCK_50),
.out(outl));
A a2(.clk(CLOCK_50),

.reset,

.reset,

.in,

.in,

Exercise 3

e In Section 6, we worked on a design of the psychic tester, where the
user needs to correctly guess 8 consecutive 4-bit patterns to be declared
a psychic.

e Say we want to modify our design so the next signal comes directly
fromuser_input.

psychic

»®

P, -
5L |

next | Generate -'IJ-—I clk

Pattern - rst
|
pattern |
SL CL & SL |
|

}cc""'"tt correct | Check | 8uess [User [® guess_ext
arrect e -+
Guesses Guess Input lg— submit_ext

|

* submit I I
I

psychic
[]
— -
5L |
next | Generate "ILI clk
| Pattern +—t— rst
|
pattern |
5L L ¢ L I ﬁ
"}CW“‘ correct uess I BES_ExT
Correct [Check -+ £ IUSEF '.-I_ Buess-
Guesses Guess nput le—4— submit_ext
|

Exercise 3

e In Section 6, we worked on a design of the psychic tester, where the
user needs to correctly guess 8 consecutive 4-bit patterns to be declared

a psychic.

e Say we want to modify our design so the next signal comes directly

fromuser_input.

1 submit I |
|

paychie
[]

[e e e e e e e e e ey

I - |

I next I Ak

I gnerate [-1 ¢

| Patzern —l rat

| |

| pattern I

| 5L (S B L :

|

| Count correct Check uUess -l——l— BUSSS_Ex

I Correct [Guss d User Input | .

] Zueszas s —— submit_ext
|

| f ey

I |

|

T — ——— — ——— — — — ——— — ——— — —————— —— —

Exercise 3

e Let'ssee how one might modify psychic_tester

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);

input logic clk, rst, submit_ext;
input logic [3:0] guess_ext;
output logic psychic;

logic [3:0] pattern, guess;
logic correct, next, submit;

genPatt pat (.clk, .rst, .pattern, .next);
userln inp (.clk, .rst,
.guess_ext, .submit_ext, .guess, .submit);
checkGuess chk (.pattern, .guess, .correct);
countRight cnt (.clk, .rst, .correct, .submit, .next, .psychic);
endmodule // psychic_tester

Exercise 3

e Remove the next signal from countRight:

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);

input logic clk, rst, submit_ext;
input logic [3:0] guess_ext;
output logic psychic;

logic [3:0] pattern, guess;
logic correct, next, submit;

genPatt pat (.clk, .rst, .pattern, .next);
userln inp (.clk, .rst,
.guess_ext, .submit_ext, .guess, .submit);
checkGuess chk (.pattern, .guess, .correct);
countRight cnt (.clk, .rst, .correct, .submit, .psychic);
endmodule // psychic_tester

Exercise 3

e Assign next to submit_ext

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);

input logic clk, rst, submit_ext;
input logic [3:0] guess_ext;
output logic psychic;

logic [3:0] pattern, guess;

logic correct, next, submit;

assign next = submit_ext;

genPatt pat (.clk, .rst, .pattern, .next);

userln inp (.clk, .rst,

.guess_ext, .submit_ext, .guess, .submit);

checkGuess chk (.pattern, .guess, .correct);

countRight cnt (.clk, .rst, .correct, .submit, .psychic);
endmodule // psychic_tester

Exercise 3

e Because we didn't modify how our input and outputs work and how the
design should behave, we should be able to use the same testbench!
e Let'stake alook at ModelSim and see if things are behaving the way we

expect...

Exercise 3

e Because we didn't modify how our input and outputs work and how the
design should behave, we should be able to use the same testbench!
e Let'stake a look at ModelSim and see if things are behaving the way we

expect...

e wave -pefal — ————7°'ibrmm

4 [psychic_tester_th/dk
4 Jpsychic_tester thifst

fpsymic_tester_ﬂ:ufguess_ext o,

L trrrrrrerbrrrrrrrrrbrrrrrerrrbrrrrrrrnnbrrrrreenrbrerrrnena
15

Cursor 1 |77 ps

Exercise 3a

e We don't get a high signal for psychic anymore...
e Group brainstorm: What could be causing this issue? What would you investigate?

£ Wave - Default s

4 |psychic_tester_th/dk
4 |psychic_tester_tb/rst

[
15

Cursor 1 |778 ps

Exercise 3a

e We don't get a high signal for psychic anymore...
e Group brainstorm: What could be causing this issue? What would you investigate?
e C(Check intermediate signals!
o Counter signal
o Pattern signal
e Investigate internal signal of submodules that could have been affected by our
modifications!

ﬂ wave -Defatlt —m—m—— ...

4 [psychic_tester_th/dk
4 [psychic_tester_thfrst

[
15

Cursor 1 |778 ps

Exercise 3b

e Let's analyze our internal signals

| 4 fosychic_tester_th/dut/guess

4. Jpsychic_tester_th/dutjcormect
4 Jpsychic_tester_thjdutinext 0o
0
0

e Group Brainstorming: What incorrect behavior do you notice?

Exercise 3b

e Let's analyze our internal signals

) g [psychic_tester_th/dut/guess
4 Jpsychic_tester_th/dut/cormect

4 Jpsychic_tester_thjdutinext

e |t's clear that our pattern is not changing like we expect anymore!
e Group Brainstorming: What other weird behaviors do you notice?

Exercise 3b

e Let's analyze our internal signals

) g [psychic_tester_th/dut/guess

4. Jpsychic_tester_th/dutjcormect
4 Jpsychic_tester_thjdutinext 0o
0
0

e |t's clear that our pattern is not changing like we expect anymore!

e Group Brainstorming: What other weird behaviors do you notice?

e Notice how at 310 ps our pattern changes, even though the next signal
should be synchronized to have a 1 clock delay!

Exercise 3b

e Let's analyze our internal signals

) g [psychic_tester_th/dut/guess

4. Jpsychic_tester_th/dutjcormect
4 Jpsychic_tester_thjdutinext 0o
0
0

e |t's clear that our pattern is not changing like we expect anymore!
e Group Brainstorming: What other weird behaviors do you notice?
e Notice the difference between signals next and submit! One is not

edge detected!

Exercise 3¢

e Group Brainstorm: Let's go back to the code and see if we can spot the
bug! What lines could be causing our timing issue?

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);

input logic clk, rst, submit_ext;
input logic [3:0] guess_ext;
output logic psychic;

logic [3:0] pattern, guess;

logic correct, next, submit;

assign next = submit_ext;

genPatt pat (.clk, .rst, .pattern, .next);

userln inp (.clk, .rst,

.guess_ext, .submit_ext, .guess, .submit);

checkGuess chk (.pattern, .guess, .correct);

countRight cnt (.clk, .rst, .correct, .submit, .psychic);
endmodule // psychic_tester

Exercise 3¢

e Group Brainstorm: Remember the two weird behaviors we noticed:
pattern is not synchronized and next is not being edge detected.

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);

input logic clk, rst, submit_ext;
input logic [3:0] guess_ext;
output logic psychic;

logic [3:0] pattern, guess;

logic correct, next, submit;

assign next = submit_ext;

genPatt pat (.clk, .rst, .pattern, .next);

userln inp (.clk, .rst,

.guess_ext, .submit_ext, .guess, .submit);

checkGuess chk (.pattern, .guess, .correct);

countRight cnt (.clk, .rst, .correct, .submit, .psychic);
endmodule // psychic_tester

Exercise 3¢

e We incorrectly assigned next to submit_ext instead of submit!

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);

input logic clk, rst, submit_ext;
input logic [3:0] guess_ext;
output logic psychic;

logic [3:0] pattern, guess;

logic correct, next, submit:
| assién next = submit_ext; I

genPatt pat (.clk, .rst, .pattern, .next);

userln inp (.clk, .rst,

.guess_ext, .submit_ext, .guess, .submit);

checkGuess chk (.pattern, .guess, .correct);

countRight cnt (.clk, .rst, .correct, .submit, .psychic);
endmodule // psychic_tester

Exercise 3¢

e We incorrectly assigned next to submit_ext instead of submit!
e Fixing the bug:

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);

input logic clk, rst, submit_ext;
input logic [3:0] guess_ext;
output logic psychic;

logic [3:0] pattern, guess;

ic correct, next, submit;
assign next = submit;l

genPatt pat (.clk, .rst, .pattern, .next);
userln inp (.clk, .rst,
.guess_ext, .submit_ext, .guess, .submit);
checkGuess chk (.pattern, .guess, .correct);
countRight cnt (.clk, .rst, .correct, .submit, .psychic);
endmodule // psychic_tester

That’s all!
Thanks for coming!

	Slide 1: Section 7
	Slide 2: Administrivia
	Slide 3: General Debugging Tips
	Slide 4: SystemVerilog Debugging
	Slide 5: SystemVerilog Debugging
	Slide 6: General Debugging Tips
	Slide 7: General Debugging Tips
	Slide 8: Quartus Debugging Tips
	Slide 9: ModelSim Debugging Tips
	Slide 10: Debugging Time!
	Slide 11: Exercise 1 – Interpreting Messages
	Slide 12: Exercise 1 (Solution)
	Slide 13: Exercise 2 – Port Connection Analysis
	Slide 14: Exercise 2-1 (Solution)
	Slide 15: Exercise 2-1 (Solution)
	Slide 16: Exercise 2-2 (Solution)
	Slide 17: Exercise 2-2 (Solution)
	Slide 18: Exercise 2-3 (Solution)
	Slide 19: Exercise 2-3 (Solution)
	Slide 20: Exercise 2-4 (Solution)
	Slide 21: Exercise 2-4 (Solution)
	Slide 22: Exercise 2-5 (Solution)
	Slide 23: Exercise 2-5 (Solution)
	Slide 24: Contention on a Net
	Slide 25: Contention on a Net
	Slide 26: Contention on a Net Example Analysis
	Slide 27: Example 1
	Slide 28: Example 1
	Slide 29: Example 2
	Slide 30: Example 2
	Slide 31: Timing Issues
	Slide 32: Example 3 - Different Clocks Issue
	Slide 33: Example 3 - Different Clocks Issue
	Slide 34: Example 3 - Different Clocks Issue
	Slide 35: Example 3 - Different Clocks Issue
	Slide 36: Different Clocks Issue (Simulation)
	Slide 37: Different Clocks Issue (Simulation)
	Slide 38: Different Clocks Issue (Simulation)
	Slide 39: Exercise 3
	Slide 40: Exercise 3
	Slide 41: Exercise 3
	Slide 42: Exercise 3
	Slide 43: Exercise 3
	Slide 44: Exercise 3
	Slide 45: Exercise 3
	Slide 46: Exercise 3a
	Slide 47: Exercise 3a
	Slide 48: Exercise 3b
	Slide 49: Exercise 3b
	Slide 50: Exercise 3b
	Slide 51: Exercise 3b
	Slide 52: Exercise 3c
	Slide 53: Exercise 3c
	Slide 54: Exercise 3c
	Slide 55: Exercise 3c
	Slide 56: That’s all! Thanks for coming!

