Section 5

Finite State Machines

Administrivia

e Lab 5: Report due next Wednesday (02/12) @ 2:30 pm,
demo by last OH on Friday (02/14), but expected during your assigned

slot.
o A\ This lab is harder than previous labs A

e Lab 6: Report due 02/19, demo by last OH on 02/21.
o M\ Thislabis a LOT harder than Lab 5 A

New SystemVerilog Commands

New SystemVerilog Commands

e enum - create an enumerated type with a restricted set of named values.
o Basicusage: enum <original type> {<name_list>} <vars>;
o <original type> must be wide enough to support the length of
<name_Tlist>; if omitted, defaults to int type.
o By default, namesin the <name_1l1ist> are assigned consecutive values
starting from 0.
m Can explicitly assign values using name=<value> syntax.

New SystemVerilog Commands

e enum - create an enumerated type with a restricted set of named values.
o Basicusage: enum <original type> {<name_list>} <vars>;
o <original type> must be wide enough to support the length of
<name_Tlist>; if omitted, defaults to int type.
o By default, namesin the <name_1l1ist> are assigned consecutive values
starting from 0.
m Can explicitly assign values using name=<value> syntax.

e Example: enum logic [1:0] {SO@, S1, S11=2'bll} ps, ns;
O SO assigned 2'b00O, S1 assigned 2'b0O1.
o Two variables declared that can only take on the values S0, S1, and S11 (no
2'b10).

New SystemVerilog Commands

e Ternary operator - shorthand for an i f-else statement using the syntax

<cond> ? <then> : <else> (same syntax as ().
o Same syntax as C/C++.
o Never necessary to use, just results in more compact code.
o Very useful in combinational logic for next state and output logic.

New SystemVerilog Commands

e Ternary operator - shorthand for an if-else statement using the syntax
<cond> ? <then> : <else> (same syntax as ().
o Same syntax as C/C++.
o Never necessary to use, just results in more compact code.
o Very useful in combinational logic for next state and output logic.

e Examples:
o case (ps)
SO: ns w ? S1 : SO;
S1: ns = w ? S11 : SO;
S11: ns w ? S11 : SO;
endcase

O assiﬁn HEXO = SW|O| ? leds : 7'b1111111i

Finite State Machine Implementation

FSM Implementation Notes

e The state diagram design is by far the most important part! The

SystemVerilog implementation process is fairly mechanical.
o Besttoimplement from scratch rather than tweak a broken initial design.

FSM Implementation Notes

e The state diagram design is by far the most important part! The

SystemVerilog implementation process is fairly mechanical.

(@)

Best to implement from scratch rather than tweak a broken initial design.

e Module design notes:

(@)

Must have a clock input (e.g., clk, clock,
CLOCK_50) for sequential elements.

Should have a resetinput (e.g., rst, reset) for
“initialization.”

Must have a present state (ps); recommended
to also have a next state (ns).

NS

g

Ps

-

<]

Pl

AR

OuTPUT

FSM Design Pattern

1) // State Encodings and Variables
a) enumto define ps and ns

2) // Next State Logic (ns)
a) always_comb or assign with blocking assignments (=)

3) // Output Logic
a) assign or always_comb with blocking assignments (=)
b) Mealy-type output example: assign out = (ps == S1) & 1in;

4) // State Update Logic (ps) - including reset
a) always_ff with non-blocking assignments (<=)

Exercise 1

e The following FSM represents a Red Light, Green Light game, where a player
is only allowed to move forward (M=1) when the light is green (L=1). Here,
the player wins (output W=1) after successfully moving twice; moving
when the light is red (L=0) results in returning to the start

L+ M/0 ~7 1M/ N m
Reset/\/\-v D .DM/I
LM/U M/0

o Implement this system in a module called 1ight_game.

L+

Exercise 1 (Solution) . A M S Q .:)M,u

e Module outline

module light_game (input logic clk, reset, M, L, output logic W);

endmodule // light_game

L+ IT’UU ~TIM/0 N

Exercise 1 (Solution) Rmt/\/\, Q .:)M,l
R T

LM/0
e State encodings and variables

module light_game (input logic clk, reset, M, L, output logic W);

enum logic [1:0] {Start, Mid, Win} ps, ns;

endmodule // light_game

L+ IT*I!U < LM/0 N

Exercise 1 (Solution) Reset/\/\, Q .:)M,l
w

LM/0
e Next state logic

module light_game (input logic clk, reset, M, L, output logic W);
enum logic [1:0] {Start, Mid, Win} ps, ns;

always_comb

case (ps)
Start: ns = (L & M) ? Mid : Start;
Mid: ns = (L &M) ? Win : (M ? Start : Mid);
Win: ns = M ? Start : Win;

endcase

endmodule // light_game

Ei-ﬁfﬂ < LM/0 N

Exercise 1 (Solution) Reset/\/\, Q .:)M,l
w

LM/0
e Output logic

module light_game (input logic clk, reset, M, L, output logic W);
enum logic [1:0] {Start, Mid, Win} ps, ns;

always_comb

case (ps)
Start: ns = (L & M) ? Mid : Start;
Mid: ns = (L &M) ? Win : (M ? Start : Mid);
Win: ns = M ? Start : Win;

endcase

assign W = (ns == Win); // alt: ((ps == Mid) & L & M) |
// ((ps == Win) & ~M)
endmodule // light_game

L+ IT*I!U < LM/0 N

Exercise 1 (Solution) Reset/\/\, Q .:)M,l
w

LM/0
e State update logic

module light_game (input logic clk, reset, M, L, output logic W);
enum logic [1:0] {Start, Mid, Win} ps, ns;

// next state logic
// output logic

always_ff @(posedge clk)
if (reset)
ps <= Start;
else
ps <= ns;

endmodule // light_game

Exercise 2

e Belowis an FSM for a modified vending machine with increased cost of
15¢ for gumballs that also accepting quarters (Q: 25¢); it still does not give

change and can only take one coin at a time.
NDQ/0

ND NDQ/0 NDQ/0
NDQ/lC\, m

NDQ + NDQ + NDQ/1

o Implement this system in a module called vend1s.

NDQ/0

NDQ/1 m
O?D NDQ/0

NDQ + NDQ/1 NDQ/0

Exercise 2 (Solution)

e Module outline NBQ + NDQ + NBQ/1

module vendl5 (input logic clk, reset, N, D, Q, output logic Open);

endmodule // vendl5

NDQ/0

NDQ/1 m
4, G

NDQ + NDQ/1 NDQ/0

Exercise 2 (Solution)

e State encodings and variables NDQ + NDQ + NDQ/1

module vendl5 (input logic clk, reset, N, D, Q, output logic Open);
enum logic [1:0] {Zero, Five=2'bl0, Ten=2'bl1l} ps, ns;

endmodule // vendl5s

NDQ/0

ﬁEQfl NDQ!U NDQIU

Exercise 2 (Solution)

®&_’
00

NDQ + NDQ/1

@D

e Next state logic NDQ + NDQ + NDQ/1
module vendl5 (input logic clk, reset, N, D, Q, output logic Open);
enum logic [1:0] {Zero, Five=2'b1l0, Ten=2'bll} ps, ns;
always_comb
case (ps)
Zero: case ({N, D, Q})
3'b000: ns = Zero;
3'b100: ns = Five;
3'b010: ns = Ten;
3'b001: ns = Zero;
default: ns = ps;
endcase
// Five and Ten defined similarly
endcase
endmodule // vendl5s

NDQ/0

ﬁﬁryl “NDG/0 NDG/0
&) (5 B

NDQ + NDQ/1 NDQHH

Exercise 2 (Solution)

e Output logic NDQ + NDQ + NDQ/1

module vendl5 (input logic clk, reset, N, D, Q, output logic Open);
enum logic [1:0] {Zero, Five=2'b1l0, Ten=2'bll} ps, ns;

// next state logic

assign Open = Q | ((ps != Zero) & D) | ((ps == Ten) & N);

endmodule // vendl5s

Exercise 2 (Solution)

e State update logic

NDQ/0

NIJQ;'EI NDQ}’U
&) (5 B

NDQ + NDQ/1 NDQHH

NDQ + NDQ + NDQ/1

// next state logic

assign Open = Q | ((ps != Zero) & D) |
always_ff @(posedge clk)
if (reset)
ps <= Zero;
else
ps <= ns;

endmodule // vendl5s

module vendl5 (input logic clk, reset, N,
enum logic [1:0] {Zero, Five=2'b1l0, Ten=2'bll} ps, ns;

D, Q, output logic Open);

Ten) & N);

((ps

Finite State Machine Testing

FSM Test Bench Notes

e All notes about sequential test benches from last week still apply!

o Generate a simulated clock (dont use clock_d1ivider), start with a reset and

define all inputs at t=0, add extra delay at end to see the effects of your last
input changes.

e To thoroughly test your FSM, need to take every transition that we
care about (can omit/ignore don't cares).

e Recommended test bench linesin initial block:
<input changes> @(posedge clk); // current state: 777

e In ModelSim, you should at least add ps to waveforms.
o Could also include ns or other signals involved in ps/ns computations.

FSM Test Bench Example e (

ﬂ_.-'ﬂ

. .D
ﬂ_fﬂ

// generate test vectors
initial begin
reset <= 1; w <= 0; @(posedge clk); // reset
reset <= 0; @(posedge clk); // curr state: SO

$stop; // pause the simulation
end

FSM Test Bench Example e (

ﬂfﬂ

Mol o:>
ﬂ_fﬂ

// generate test vectors
initial begin
reset <= 1; w <= 0; @(posedge clk); // reset
reset <= 0; @(posedge clk); // curr state: SO
w <= 1; @(posedge clk); // curr state: SO
w <= 0; @(posedge clk); // curr state: S1
w <= 1; @(posedge clk); // curr state: SO
@(posedge clk); // curr state: S1
@(posedge clk); // curr state: S11
@(posedge clk); // curr state: S11
w <= 0; @(posedge clk); // curr state: S11
@(posedge clk); // curr state: SO (extra cycle)
$stop; // pause the simulation
end

Exercise 3

e C(reate atest bench for vend15 and simulate it in ModelSim.

o What's the minimum number of clock cycles required to thoroughly test it?

Exercise 3 (Solution)

e (Create module, declare port connections, instantiate dut.

module vendl5_tb ();
logic clk, reset, N, D, Q, Open;

vendl5 dut (.*);

endmodule // vendl5_tb

Exercise 3 (Solution)

e Setup clock.

module vendl5_tb ();
// signal declarations and dut instantiation

parameter T = 100;
initial
clk = 1'b0;
always begin
#(T/2) clk <= 1'b0;
#(T/2) clk <= 1'b1;
end

endmodule // vendl5_tb
S

Exercise 3 (Solution)

e Definedinitial block and add $stop system task.

module vendl5_tb ();
// signal declarations and dut instantiation
// clock generation

initial begin

$stop;
end

endmodule // vendl5_tb

Exercise 3 (Solution)

e Start with a reset and initialize all inputs.

module vendl5_tb ();
// signal declarations and dut instantiation
// clock generation

initial begin
{reset,N,D,Q} <= 4'b1000; @(posedge clk); // reset

$stop;
end

endmodule // vendl5_tb

Exercise 3 (Solution)

e Map out a sequence of inputs that would allow us to test every transition.

NDQ/0

ND DQ NDQ/0
NDQ/IC\V NDQ/0 Q/
() o
00
— r\)———

NDQ + NDQ + NDQ/1

Exercise 3 (Solution)

e Map out a sequence of inputs that would allow us to test every transition.
o This is just one of many possibilities!
NDQ/0
11,13,15
NDQ/{] NDQ/D

NDQ + NDQ + NDQ/1
14 12 10

Exercise 3 (Solution)

e Add the transitions we mapped out.

NDQ/0
s s 1 [1] | T
NDQ/:CZ-\ NDQ/0 NDQ/0

NDQ + NDQ + NDQ/1

14 12

10

initial begin
{reset,N,D,Q}
{reset,N,D,Q}
{N,D,Q}
{N,D,Q}
{N,D,Q}
{N,D,Q}
{N,D,Q}
{N,D,Q}
{N,D,Q}

module vendl5_tb ();
// signal declarations, dut instantiation, clock generation

<=
<=
<=
<=
<=
<=
<=
<=
<=

4'b1000; @(posedge
4'b0000; @(posedge
3'b001; @(posedge
3'b100; @(posedge
3'b001l; @(posedge
3'b100; @(posedge
3'b000; @(posedge
3'b010; @(posedge
3'b100; @(posedge

@(posedge

// continued on next slide

clk);
clk);
clk);
clk);
clk);
clk);
clk);
clk);
clk);
clk);

// reset

// Zero (1)
// Zero (2)
// Zero (3)
// Five (4)
// Zero (5)
// Five (6)
// Five (7)
// Zero (8)
// Five (9)

Exercise 3 (Solution)

e Add the transitions we mapped out.

// signal declarations, dut instantiation, clock generation
initial begin
// previous clock cycles
{N,D,Q} <= 3'b001; @(posedge clk); // Ten (10)
{N,D,Q} <= 3'b010; @(posedge clk); // Zero (11)
@(posedge clk); // Ten (12)
@(posedge clk); // Zero (13)

{N,D,Q} <= 3'b100; @(posedge clk); // Ten (14)
{N,D,Q} <= 3'b010; @(posedge clk); // Zero (15)
{N,D,Q} <= 3'b000; @(posedge clk); // Ten (16)
@(posedge clk); // extra
$stop;

end
endmodule // vendl5_tb

Exercise 3 (Solution)

e Simulation results should verify that (1) reset works, (2) the transition
between states as expected, and (3) our output matches what we expect.

o
#
a#
#
4
F
#
4

Exercise 3 (Solution)

e Step 1 - Verify the reset behavior.

module vendl5 (...)
always_ff @(posedge
clk)
if (reset)
ps <= Zero; — |
else
ps <= ns;

endmodule // vendl5

module vendl5_tb ();
// signal declarations, dut instantiation, clock generation
initial begin
{reset,N,D,Q
{reset,N,D,Q

4'b1000; @(posedge clk); // reset

} <=
} <= 4'b0000; @(posedge clk); // Zero (1)

frend15_thidk
Jeend1S_t freset
Jrend15_thym
frengis_sn
feend15_th/Q
frend15_thjdutjps

Exercise 3 (Solution)

e Step 2 - Verifying every initial begin
.. {reset,N,D,Q} <= 4'b1000; @(posedge clk); |// reset
tra nS|t|On between States {reset,N,D,Q} <= 4'b0000; @(posedge clk); |// Zero (1)
{N,D,Q} <= 3'b001l; @(posedge clk); |// Zero (2)
{N,D,Q} <= 3'b100; @(posedge clk); |// Zero (3)
aS eXpeCted' {N,D,Q} <= 3'b001l; @(posedge clk); |// Five (4)

{N,D,Q} <= 3'b100; @(posedge clk); |// Zero (5)

{N,D,Q} <= 3'b000; @(posedge clk); |// Five (6)

{N,D,Q} <= 3'b010; @(posedge clk); |// Five (7)

{N,D,Q} <= 3'b100; @(posedge clk); |// Zero (8)

@(posedge clk); | // Five (9)

{N,D,Q} <= 3'b001l; @(posedge clk); |// Ten (10)

{N,D,Q} <= 3'b010; @(posedge clk); |// Zero (11)

@(posedge clk); |// Ten (12)

@(posedge
{N,D,Q} <= 3'b100; @(posedge
{N,D,Q} <= 3'b010; @(posedge

fvend15_thfreset {N,D,Q} <= 3'b000; @(posedge

feend15_th/N @(posedge

fvend15_th/D

fvend15_th/Q

fvend15_th/di tjps

fvend15_th/dutms

fvend15_tb/Open

&
#
&
&
#
F
&
&

Transitions that ﬁﬁw’@\f @ N
Exe rCise 3 (Solution) should output 1: Reset O___D RBG/0

(A N R Y W T

v & *;
|

((ps != Zero) & D) | ((ps == Ten) & N);

	Slide 1: Section 5
	Slide 2: Administrivia
	Slide 3: New SystemVerilog Commands
	Slide 4: New SystemVerilog Commands
	Slide 5: New SystemVerilog Commands
	Slide 6: New SystemVerilog Commands
	Slide 7: New SystemVerilog Commands
	Slide 8: Finite State Machine Implementation
	Slide 9: FSM Implementation Notes
	Slide 10: FSM Implementation Notes
	Slide 11: FSM Design Pattern
	Slide 12: Exercise 1
	Slide 13: Exercise 1 (Solution)
	Slide 14: Exercise 1 (Solution)
	Slide 15: Exercise 1 (Solution)
	Slide 16: Exercise 1 (Solution)
	Slide 17: Exercise 1 (Solution)
	Slide 18: Exercise 2
	Slide 19: Exercise 2 (Solution)
	Slide 20: Exercise 2 (Solution)
	Slide 21: Exercise 2 (Solution)
	Slide 22: Exercise 2 (Solution)
	Slide 23: Exercise 2 (Solution)
	Slide 24: Finite State Machine Testing
	Slide 25: FSM Test Bench Notes
	Slide 26: FSM Test Bench Example
	Slide 27: FSM Test Bench Example
	Slide 28: Exercise 3
	Slide 29: Exercise 3 (Solution)
	Slide 30: Exercise 3 (Solution)
	Slide 31: Exercise 3 (Solution)
	Slide 32: Exercise 3 (Solution)
	Slide 33: Exercise 3 (Solution)
	Slide 34: Exercise 3 (Solution)
	Slide 35: Exercise 3 (Solution)
	Slide 36: Exercise 3 (Solution)
	Slide 37: Exercise 3 (Solution)
	Slide 38: Exercise 3 (Solution)
	Slide 39: Exercise 3 (Solution)
	Slide 40: Exercise 3 (Solution)

