
Section 5
Finite State Machines

Administrivia

● Lab 5: Report due next Wednesday (02/12) @ 2:30 pm,

demo by last OH on Friday (02/14), but expected during your assigned

slot.

○ This lab is harder than previous labs

● Lab 6: Report due 02/19, demo by last OH on 02/21.

○ This lab is a LOT harder than Lab 5

New SystemVerilog Commands

New SystemVerilog Commands

● enum – create an enumerated type with a restricted set of named values.

○ Basic usage: enum <original type> {<name_list>} <vars>;

○ <original type> must be wide enough to support the length of

<name_list>; if omitted, defaults to int type.

○ By default, names in the <name_list> are assigned consecutive values

starting from 0.

■ Can explicitly assign values using name=<value> syntax.

New SystemVerilog Commands

● enum – create an enumerated type with a restricted set of named values.

○ Basic usage: enum <original type> {<name_list>} <vars>;

○ <original type> must be wide enough to support the length of

<name_list>; if omitted, defaults to int type.

○ By default, names in the <name_list> are assigned consecutive values

starting from 0.

■ Can explicitly assign values using name=<value> syntax.

● Example: enum logic [1:0] {S0, S1, S11=2'b11} ps, ns;

○ S0 assigned 2'b00, S1 assigned 2'b01.

○ Two variables declared that can only take on the values S0, S1, and S11 (no

2'b10).

New SystemVerilog Commands

● Ternary operator – shorthand for an if-else statement using the syntax

<cond> ? <then> : <else> (same syntax as C).

○ Same syntax as C/C++.

○ Never necessary to use, just results in more compact code.

○ Very useful in combinational logic for next state and output logic.

New SystemVerilog Commands

● Ternary operator – shorthand for an if-else statement using the syntax

<cond> ? <then> : <else> (same syntax as C).

○ Same syntax as C/C++.

○ Never necessary to use, just results in more compact code.

○ Very useful in combinational logic for next state and output logic.

● Examples:
○ case (ps)

S0: ns = w ? S1 : S0;

S1: ns = w ? S11 : S0;

S11: ns = w ? S11 : S0;

endcase

○ assign HEX0 = SW[0] ? leds : 7'b1111111;

Finite State Machine Implementation

FSM Implementation Notes

● The state diagram design is by far the most important part! The

SystemVerilog implementation process is fairly mechanical.
○ Best to implement from scratch rather than tweak a broken initial design.

FSM Implementation Notes

● The state diagram design is by far the most important part! The

SystemVerilog implementation process is fairly mechanical.
○ Best to implement from scratch rather than tweak a broken initial design.

● Module design notes:
○ Must have a clock input (e.g., clk, clock,

CLOCK_50) for sequential elements.

○ Should have a reset input (e.g., rst, reset) for

“initialization.”

○ Must have a present state (ps); recommended

to also have a next state (ns).

FSM Design Pattern

1) // State Encodings and Variables

a) enum to define ps and ns

2) // Next State Logic (ns)
a) always_comb or assign with blocking assignments (=)

3) // Output Logic

a) assign or always_comb with blocking assignments (=)

b) Mealy-type output example: assign out = (ps == S1) & in;

4) // State Update Logic (ps) - including reset

a) always_ff with non-blocking assignments (<=)

● The following FSM represents a Red Light, Green Light game, where a player

is only allowed to move forward (M=1) when the light is green (L=1). Here,

the player wins (output W=1) after successfully moving twice; moving

when the light is red (L=0) results in returning to the start

○ Implement this system in a module called light_game.

Exercise 1

● Module outline

Exercise 1 (Solution)

module light_game (input logic clk, reset, M, L, output logic W);

endmodule // light_game

module light_game (input logic clk, reset, M, L, output logic W);

enum logic [1:0] {Start, Mid, Win} ps, ns;

endmodule // light_game

Exercise 1 (Solution)

● State encodings and variables

● Next state logic

module light_game (input logic clk, reset, M, L, output logic W);

enum logic [1:0] {Start, Mid, Win} ps, ns;

always_comb
case (ps)
Start: ns = (L & M) ? Mid : Start;
Mid: ns = (L & M) ? Win : (M ? Start : Mid);
Win: ns = M ? Start : Win;

endcase

endmodule // light_game

Exercise 1 (Solution)

● Output logic

module light_game (input logic clk, reset, M, L, output logic W);

enum logic [1:0] {Start, Mid, Win} ps, ns;

always_comb
case (ps)
Start: ns = (L & M) ? Mid : Start;
Mid: ns = (L & M) ? Win : (M ? Start : Mid);
Win: ns = M ? Start : Win;

endcase

assign W = (ns == Win); // alt: ((ps == Mid) & L & M) |
// ((ps == Win) & ~M)

endmodule // light_game

Exercise 1 (Solution)

● State update logic

module light_game (input logic clk, reset, M, L, output logic W);

enum logic [1:0] {Start, Mid, Win} ps, ns;

... // next state logic

... // output logic

always_ff @(posedge clk)
if (reset)
ps <= Start;

else
ps <= ns;

endmodule // light_game

Exercise 1 (Solution)

Exercise 2

● Below is an FSM for a modified vending machine with increased cost of

15¢ for gumballs that also accepting quarters (Q: 25¢); it still does not give

change and can only take one coin at a time.

○ Implement this system in a module called vend15.

● Module outline

Exercise 2 (Solution)

module vend15 (input logic clk, reset, N, D, Q, output logic Open);

endmodule // vend15

● State encodings and variables

module vend15 (input logic clk, reset, N, D, Q, output logic Open);
enum logic [1:0] {Zero, Five=2'b10, Ten=2'b11} ps, ns;

endmodule // vend15

Exercise 2 (Solution)

● Next state logic

module vend15 (input logic clk, reset, N, D, Q, output logic Open);
enum logic [1:0] {Zero, Five=2'b10, Ten=2'b11} ps, ns;

always_comb
case (ps)
Zero: case ({N, D, Q})

3'b000: ns = Zero;
3'b100: ns = Five;
3'b010: ns = Ten;
3'b001: ns = Zero;

default: ns = ps;
endcase

... // Five and Ten defined similarly
endcase

endmodule // vend15

Exercise 2 (Solution)

● Output logic

module vend15 (input logic clk, reset, N, D, Q, output logic Open);
enum logic [1:0] {Zero, Five=2'b10, Ten=2'b11} ps, ns;

... // next state logic

assign Open = Q | ((ps != Zero) & D) | ((ps == Ten) & N);

endmodule // vend15

Exercise 2 (Solution)

● State update logic

module vend15 (input logic clk, reset, N, D, Q, output logic Open);
enum logic [1:0] {Zero, Five=2'b10, Ten=2'b11} ps, ns;

... // next state logic

assign Open = Q | ((ps != Zero) & D) | ((ps == Ten) & N);

always_ff @(posedge clk)
if (reset)
ps <= Zero;

else
ps <= ns;

endmodule // vend15

Exercise 2 (Solution)

Finite State Machine Testing

FSM Test Bench Notes

● All notes about sequential test benches from last week still apply!

○ Generate a simulated clock (don’t use clock_divider), start with a reset and

define all inputs at t=0, add extra delay at end to see the effects of your last

input changes.

● To thoroughly test your FSM, need to take every transition that we

care about (can omit/ignore don’t cares).

● Recommended test bench lines in initial block:
<input changes> @(posedge clk); // current state: ???

● In ModelSim, you should at least add ps to waveforms .

○ Could also include ns or other signals involved in ps/ns computations.

FSM Test Bench Example
// generate test vectors

initial begin

reset <= 1; w <= 0; @(posedge clk); // reset

reset <= 0; @(posedge clk); // curr state: S0

w <= 1; @(posedge clk); // curr state: S0

w <= 0; @(posedge clk); // curr state: S1

w <= 1; @(posedge clk); // curr state: S0

@(posedge clk); // curr state: S1

@(posedge clk); // curr state: S11

@(posedge clk); // curr state: S11

w <= 0; @(posedge clk); // curr state: S11

@(posedge clk); // curr state: S0 (extra cycle)

$stop; // pause the simulation

end

FSM Test Bench Example
// generate test vectors

initial begin

reset <= 1; w <= 0; @(posedge clk); // reset

reset <= 0; @(posedge clk); // curr state: S0

w <= 1; @(posedge clk); // curr state: S0

w <= 0; @(posedge clk); // curr state: S1

w <= 1; @(posedge clk); // curr state: S0

@(posedge clk); // curr state: S1

@(posedge clk); // curr state: S11

@(posedge clk); // curr state: S11

w <= 0; @(posedge clk); // curr state: S11

@(posedge clk); // curr state: S0 (extra cycle)

$stop; // pause the simulation

end

Exercise 3

● Create a test bench for vend15 and simulate it in ModelSim.

○ What’s the minimum number of clock cycles required to thoroughly test it?

Exercise 3 (Solution)

● Create module, declare port connections, instantiate dut.

module vend15_tb ();
logic clk, reset, N, D, Q, Open;

vend15 dut (.*);

endmodule // vend15_tb

Exercise 3 (Solution)

● Setup clock.

module vend15_tb ();
... // signal declarations and dut instantiation

parameter T = 100;
initial
clk = 1'b0;

always begin
#(T/2) clk <= 1'b0;
#(T/2) clk <= 1'b1;

end

endmodule // vend15_tb

Exercise 3 (Solution)

● Define initial block and add $stop system task.

module vend15_tb ();
... // signal declarations and dut instantiation
... // clock generation

initial begin

$stop;
end

endmodule // vend15_tb

Exercise 3 (Solution)

● Start with a reset and initialize all inputs.

module vend15_tb ();
... // signal declarations and dut instantiation
... // clock generation

initial begin
{reset,N,D,Q} <= 4'b1000; @(posedge clk); // reset

$stop;
end

endmodule // vend15_tb

● Map out a sequence of inputs that would allow us to test every transition.

Exercise 3 (Solution)

● Map out a sequence of inputs that would allow us to test every transition.
○ This is just one of many possibilities!

Exercise 3 (Solution)

1

2
3,5,8

4

16

10

11,13,15

1214

6

7

9

Exercise 3 (Solution)

● Add the transitions we mapped out.

module vend15_tb ();
... // signal declarations, dut instantiation, clock generation
initial begin
{reset,N,D,Q} <= 4'b1000; @(posedge clk); // reset
{reset,N,D,Q} <= 4'b0000; @(posedge clk); // Zero (1)

{N,D,Q} <= 3'b001; @(posedge clk); // Zero (2)
{N,D,Q} <= 3'b100; @(posedge clk); // Zero (3)
{N,D,Q} <= 3'b001; @(posedge clk); // Five (4)
{N,D,Q} <= 3'b100; @(posedge clk); // Zero (5)
{N,D,Q} <= 3'b000; @(posedge clk); // Five (6)
{N,D,Q} <= 3'b010; @(posedge clk); // Five (7)
{N,D,Q} <= 3'b100; @(posedge clk); // Zero (8)

@(posedge clk); // Five (9)
... // continued on next slide

Exercise 3 (Solution)

● Add the transitions we mapped out.

... // signal declarations, dut instantiation, clock generation
initial begin
... // previous clock cycles

{N,D,Q} <= 3'b001; @(posedge clk); // Ten (10)
{N,D,Q} <= 3'b010; @(posedge clk); // Zero (11)

@(posedge clk); // Ten (12)
@(posedge clk); // Zero (13)

{N,D,Q} <= 3'b100; @(posedge clk); // Ten (14)
{N,D,Q} <= 3'b010; @(posedge clk); // Zero (15)
{N,D,Q} <= 3'b000; @(posedge clk); // Ten (16)

@(posedge clk); // extra
$stop;

end
endmodule // vend15_tb

Exercise 3 (Solution)

● Simulation results should verify that (1) reset works, (2) the transition

between states as expected, and (3) our output matches what we expect.

Exercise 3 (Solution)

● Step 1 - Verify the reset behavior.

module vend15_tb ();
... // signal declarations, dut instantiation, clock generation
initial begin
{reset,N,D,Q} <= 4'b1000; @(posedge clk); // reset

{reset,N,D,Q} <= 4'b0000; @(posedge clk); // Zero (1)
...

module vend15 (...)
...
always_ff @(posedge

clk)
if (reset)
ps <= Zero;

else
ps <= ns;

...
endmodule // vend15

Exercise 3 (Solution)

● Step 2 - Verifying every

transition between states

as expected.

...
initial begin
{reset,N,D,Q} <= 4'b1000; @(posedge clk); // reset
{reset,N,D,Q} <= 4'b0000; @(posedge clk); // Zero (1)

{N,D,Q} <= 3'b001; @(posedge clk); // Zero (2)
{N,D,Q} <= 3'b100; @(posedge clk); // Zero (3)
{N,D,Q} <= 3'b001; @(posedge clk); // Five (4)
{N,D,Q} <= 3'b100; @(posedge clk); // Zero (5)
{N,D,Q} <= 3'b000; @(posedge clk); // Five (6)
{N,D,Q} <= 3'b010; @(posedge clk); // Five (7)
{N,D,Q} <= 3'b100; @(posedge clk); // Zero (8)

@(posedge clk); // Five (9)
{N,D,Q} <= 3'b001; @(posedge clk); // Ten (10)
{N,D,Q} <= 3'b010; @(posedge clk); // Zero (11)

@(posedge clk); // Ten (12)
@(posedge clk); // Zero (13)

{N,D,Q} <= 3'b100; @(posedge clk); // Ten (14)
{N,D,Q} <= 3'b010; @(posedge clk); // Zero (15)
{N,D,Q} <= 3'b000; @(posedge clk); // Ten (16)

@(posedge clk); // extra
...

Exercise 3 (Solution)

● Step 3 - Verifying our output matches what we expect.

assign Open = Q | ((ps != Zero) & D) | ((ps == Ten) & N);

2

4

101214

7

Transitions that
should output 1:

	Slide 1: Section 5
	Slide 2: Administrivia
	Slide 3: New SystemVerilog Commands
	Slide 4: New SystemVerilog Commands
	Slide 5: New SystemVerilog Commands
	Slide 6: New SystemVerilog Commands
	Slide 7: New SystemVerilog Commands
	Slide 8: Finite State Machine Implementation
	Slide 9: FSM Implementation Notes
	Slide 10: FSM Implementation Notes
	Slide 11: FSM Design Pattern
	Slide 12: Exercise 1
	Slide 13: Exercise 1 (Solution)
	Slide 14: Exercise 1 (Solution)
	Slide 15: Exercise 1 (Solution)
	Slide 16: Exercise 1 (Solution)
	Slide 17: Exercise 1 (Solution)
	Slide 18: Exercise 2
	Slide 19: Exercise 2 (Solution)
	Slide 20: Exercise 2 (Solution)
	Slide 21: Exercise 2 (Solution)
	Slide 22: Exercise 2 (Solution)
	Slide 23: Exercise 2 (Solution)
	Slide 24: Finite State Machine Testing
	Slide 25: FSM Test Bench Notes
	Slide 26: FSM Test Bench Example
	Slide 27: FSM Test Bench Example
	Slide 28: Exercise 3
	Slide 29: Exercise 3 (Solution)
	Slide 30: Exercise 3 (Solution)
	Slide 31: Exercise 3 (Solution)
	Slide 32: Exercise 3 (Solution)
	Slide 33: Exercise 3 (Solution)
	Slide 34: Exercise 3 (Solution)
	Slide 35: Exercise 3 (Solution)
	Slide 36: Exercise 3 (Solution)
	Slide 37: Exercise 3 (Solution)
	Slide 38: Exercise 3 (Solution)
	Slide 39: Exercise 3 (Solution)
	Slide 40: Exercise 3 (Solution)

