
Section 4
Sequential Logic

Administrivia

● Lab 4: Report due next Wednesday (02/05) @ 2:30 pm,

demo by last OH on Friday (02/07), but expected during your assigned

slot.

● Lab 5: Report due 02/12, demo by last OH on 02/14.
○ This lab is a LOT harder than previous labs

● Quiz 1: Tuesday (02/04) at end of Lecture.
○ Very formulaic: gates, DeMorgan’s, K-map, waveforms, test benches.

○ Study from past quizzes on course website!

Parameters

New SystemVerilog Commands

● parameter – create a symbolic constant for a value that can be

referenced in scope.

○ Like #define in C/C++.

○ Useful for things like timing constants, state names, module widths.

New SystemVerilog Commands

● parameter – create a symbolic constant for a value that can be

referenced in scope.

○ Like #define in C/C++.

○ Useful for things like timing constants, state names, module widths.

● Parameterized modules:
○ Definition: module <name> #(<param list>) (<port list>);

■ <param list> is comma-separated and can include default values

(e.g., #(M, N=4)).

○ Instantiation: <name> #(<params>) <inst_name> (<ports>);

■ Notice that parameter definitions are to the left of the instance name!

■ Generates different versions of the same module definition (like templates in C++).

● (1) Parameterize the comparator module for bit-width N:
○ Hint: you will need to use a reduction operator (e.g., ~&A), which will reduce all

the bits of a vector into a single value using the specified Boolean operator.

● (2) Parameterize the guessing_game module for bit-width N and secret

number S:

Exercise 1

// Implements an N-bit comparator circuit
module comparator (A, B, is_lt, is_eq, is_gt);

// Game to check user's N-bit input guess against a secret #
module guessing_game (LEDR, KEY, SW);

https://nandland.com/reduction-operators/

● Changes underlined and shown in red:

Exercise 1 (Solution)

module comparator #(N = 3)
(input logic [N-1:0] A, B,
output logic is_lt, is_gt, is_eq);

// subtraction result (intermediate)
logic [N-1:0] sub;
assign sub = A - B;

assign is_eq = ~|sub;
assign is_lt = sub[N-1];
assign is_gt = ~is_eq & ~is_lt;

endmodule // comparator

● Changes underlined and shown in red:

module guessing_game #(N=3, S=3'd1)
(output logic [9:0] LEDR,
input logic [3:0] KEY, input logic [9:0] SW);

logic is_lt, is_eq, is_gt;

comparator #(.N(N)) number_comparator (
.A(SW[N-1:0]), .B(S), .is_lt, .is_eq, .is_gt

);

... // LEDR assignments (unchanged)

endmodule // guessing_game

Exercise 1 (Solution)

Sequential Logic

New SystemVerilog Commands

● always_ff – higher-level description of behavior that includes sequential

logic.

○ Requires an explicit sensitivity/trigger list (e.g., @(posedge clk)) that dictates

when the code block will take effect.

● Non-blocking statements (<=) should be used with always_ff, blocking

statements (=) should be used with assign and always_comb.

Flip-Flops and Registers (Review)

● A flip-flop samples d on triggers and transfers its value to q.

● A register is a collection of N flip-flops together.

module basic_D_FF (output logic q, input logic d, clk);

always_ff @(posedge clk)

q <= d;

endmodule // basic_D_FF

module basic_reg #(N) (output logic [N-1:0] Q,

input logic [N-1:0] D,

input logic clk);

always_ff @(posedge clk)

Q <= D;

endmodule // basic_reg

Reset Functionality (Review)

● A sequential element often has a reset signal that will drive its output to a

known value.
○ Useful in hardware to substitute for “initialization.”

○ Two options, synchronous (left) or asynchronous (right):

module D_FF1 (output logic q,

input logic d, reset, clk);

always_ff @(posedge clk)

if (reset)

q <= 0;

else

q <= d;

endmodule // D_FF1

module D_FF2 (output logic q,

input logic d, reset, clk);

always_ff @(posedge clk or posedge reset)

if (reset)

q <= 0;

else

q <= d;

endmodule // D_FF2

Clock in Hardware

● We will use the DE1-SoC’s built-in 50 MHz clock called CLOCK_50.
○ Accessed by adding CLOCK_50 as an input logic to your top-level module.

● Because 50 MHz (i.e., clock period = 20 ns) may be too fast for humans,

can use provided clock_divider module to slow things down.
○ Recommendation: assign extra signal clk to divided_clocks[#].

○ Make sure to comment out clock_divider for simulation!

logic [31:0] divided_clocks;

logic clk;

clock_divider cdiv (.clock(CLOCK_50), .divided_clocks);

assign clk = divided_clocks[23]; // replace with = CLOCK_50 for simulation

// Instantiating a module that is using clock 23

<module_name> <instance_name> (.clk, .reset, ...);

Exercise 2

● Write a module called string_lights that implements the system

shown below (a string of 10 flip-flops/1-bit registers tied to the LEDRs) for

the DE1-SoC.
○ Use SW[9] as the reset, SW[0] as In, and ~KEY[0] as clk.

■ Since we are using a KEY for the clock, no need for clock_divider.

○ Hint: flip-flops can be module instances or inferred from an always_ff block.

Exercise 2 (Solution)

● Version 1: module instances
○ Connections made via ports.

module string_lights (output logic [9:0] LEDR,
input logic [3:0] KEY,
input logic [9:0] SW);

logic clk, reset, in;
assign clk = ~KEY[0];
assign reset = SW[9];
assign in = SW[0];

D_FF1 ff9 (.q(LEDR[9]), .d(in), .reset, .clk);
D_FF1 ff8 (.q(LEDR[8]), .d(LEDR[9]), .reset, .clk);
...
D_FF1 ff1 (.q(LEDR[1]), .d(LEDR[2]), .reset, .clk);
D_FF1 ff0 (.q(LEDR[0]), .d(LEDR[1]), .reset, .clk);

endmodule // string_lights

Exercise 2 (Solution)

● Version 2: always_ff
○ Connections made via non-blocking assignments.

module string_lights (output logic [9:0] LEDR,
input logic [3:0] KEY,
input logic [9:0] SW);

logic clk, reset, in;
assign clk = ~KEY[0];
assign reset = SW[9];
assign in = SW[0];

always_ff @(posedge clk)
if (reset)

LEDR <= 10'd0;

else

LEDR <= {in, LEDR[9:1]};

endmodule // string_lights

Exercise 2 Demo (If Time)

● Compile and run string_lights on a DE1-SoC.
○ Normally, you should ALWAYS run simulations first.

Sequential Logic Test Benches

Clock Generation (Review)

● In simulation, need to create a clock signal yourself (steady square wave).
○ Just pick your favorite form and copy-and-paste into your future test benches.

○ Exact period doesn’t really matter since it’s all arbitrary time units.

parameter T = 100; // period

initial

clk = 0;

always begin

#(T/2) clk <= 1;

#(T/2) clk <= 0;

end

parameter T = 100; // period

initial

clk = 0;

always

#(T/2) clk <= ~clk;

Explicit Edges: Toggle:

Edge-Sensitive Delays

● Delays until specified transition on signal: @(<pos/negedge> signal);
○ Allows us to wait for the next clock trigger in our simulation since that’s when

sequential elements will update.

● Example test bench block:

initial begin

d <= 1'b1; reset <= 1'b1; @(posedge clk); // reset

reset <= 1'b0; @(posedge clk); // store 1

@(posedge clk); // hold 1

d <= 1'b0; @(posedge clk); // store 0

@(posedge clk); // hold 0

$stop();

end

Sequential Test Bench Notes

● Need to manually track the expected state for sequential elements.

● Always define ALL of your inputs at t=0, even if you’re resetting, to

eliminate unnecessary red lines in simulation.

● Whitespace in initial block doesn’t matter but we recommend being

consistent (i.e., line up your delays on right or left side of each line).

● All logic delays set to 0 in our ModelSim setup, so be careful with

interpreting signal changes.

● Include an extra delay at the end to see the effects of your last input

changes.

1 UNTIL clock trigger

changes to 0
right AFTER
clock trigger

Exercise 3

● Create a test bench for string_lights and simulate it in ModelSim.

○ Do we need this test bench to be thorough? What would be enough to

convince you that it is working properly?

○ What do you think the best combination of signals (and radices) are to use for

the reader of your simulation?

■ e.g., do you want to show the top-level SW[9] signal or an internal reset

signal?

Exercise 3 (Solution)

● Create Module , create ports, instantiate dut

module string_lights_tb ();
logic [9:0] LEDR;
logic [3:0] KEY;
logic [9:0] SW;

string_lights dut (.*);

endmodule // string_lights_tb

Exercise 3 (Solution)

● Setup clock – since KEY[0] is active-low, need to start with 1 instead of 0.

module string_lights_tb ();
... // signal declarations and dut instantiation

parameter T = 100;

initial
KEY[0] = 1'b1;

always begin
#(T/2) KEY[0] <= 1'b0;
#(T/2) KEY[0] <= 1'b1;

end

endmodule // string_lights_tb

Exercise 3 (Solution)

● Define initial block and add $stop system task.
○ Make sure to initialize all inputs at t = 0!

module string_lights_tb ();
... // signal declarations and dut instantiation
... // clock generation

initial begin

SW[0] <= 1'b0; SW[9] <= 1'b1; @(negedge KEY[0]); // reset

$stop;
end

endmodule // string_lights_tb

● We can now start simulating some possible behaviors of our design!
○ e.g., let’s try the input sequence 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1

Exercise 3 (Solution)

module string_lights_tb ();
... // signal declarations and dut instantiation
... // clock generation

initial begin

SW[0] <= 1'b0; SW[9] <= 1'b1; @(negedge KEY[0]); // reset
SW[0] <= 1'b0; SW[9] <= 1'b0; @(negedge KEY[0]); // 0
SW[0] <= 1'b1; @(negedge KEY[0]); // 1
... // finish desired pattern

@(negedge KEY[0]); // final delay
$stop;

end
endmodule // string_lights_tb

Exercise 3 (Solution)

● Simulation results verify (1) reset works, (2) inputs travel across entire

string, and (3) a variety of combinations of inputs.
○ Using internal signal names for readability.

Exercise 3 (Solution)

● Simulation results verify (1) reset works, (2) inputs travel across entire

string, and (3) a variety of combinations of inputs.
○ Using internal signal names for readability.

● Many other behaviors are possible and should be tested!
○ The idea here is not necessarily to test out all possibilities like in combinational

logic but enough relevant scenarios to give you confidence that it is working

properly.

	Slide 1: Section 4
	Slide 2: Administrivia
	Slide 3: Parameters
	Slide 4: New SystemVerilog Commands
	Slide 5: New SystemVerilog Commands
	Slide 6: Exercise 1
	Slide 7: Exercise 1 (Solution)
	Slide 8: Exercise 1 (Solution)
	Slide 9: Sequential Logic
	Slide 10: New SystemVerilog Commands
	Slide 11: Flip-Flops and Registers (Review)
	Slide 12: Reset Functionality (Review)
	Slide 13: Clock in Hardware
	Slide 14: Exercise 2
	Slide 15: Exercise 2 (Solution)
	Slide 16: Exercise 2 (Solution)
	Slide 17: Exercise 2 Demo (If Time)
	Slide 18: Sequential Logic Test Benches
	Slide 19: Clock Generation (Review)
	Slide 20: Edge-Sensitive Delays
	Slide 21: Sequential Test Bench Notes
	Slide 22: Exercise 3
	Slide 23: Exercise 3 (Solution)
	Slide 24: Exercise 3 (Solution)
	Slide 25: Exercise 3 (Solution)
	Slide 26: Exercise 3 (Solution)
	Slide 27: Exercise 3 (Solution)
	Slide 28: Exercise 3 (Solution)

