CSE 569 Section 2

— Modules and Gates I

Administrivia

e Lab 1&2: Report due next Wednesday (1/22) @ 2:30 pm,
demo by last OH on Friday (1/24), but expected during your assigned slot.

e Lab 3: Report due 1/29, demo by last OH on 1/31 (a week after lab 1&2)

L

SystemVerilog Review

FPGA Engineer =~ C++ Developer

®)

|

Just send the mr(e)gd':soh:i:dw?ooafo"c‘:ss
signal to both ports. this data at the same time
and my output is random !

What is SystemVerilog?

e SystemVerilog is a Hardware Description Language (HDL).

O

We can describe digital circuits in code!

module AOI (F, A, B, C, D);
output logic F;
input logic A, B, C, D;
assign F = ~((A & B) |

(C & D));
endmodule

A

B
|::> F
@

D

e Different from your normal programming language:
The language primitives are fundamentally different (e.g., wires and gates

O

instead of variables).

Hardware execution is concurrent (i.e., hardware never goes away and is
constantly computing), as opposed to sequential software execution (i.e., one

instruction at a time).

Modules

e The basic building block in SystemVerilog is the module, which represents

connected “black boxes” in our designs.
o One definition, enclosed between the keywords module and endmodule.
o As many instances as desired, each identified uniquely by name.

Definition: Instantiation:
module name port\list (e.g., inputs and outputs) insta\nce name port co\nnections (here, explicit)
X) X N
module AOI (F, A, B, C, D); AOI gatel (.F(s0), .A(sl), .B(s2),
port | output logic F; .C(s3), .D(s4));

types input Tlogic A, B, C, D;
// implementation

Block:

endmodule sl ——|A
2
s2 — B gatel . <0
s3 ——|C (AOI)
s4 — D

Logic Gates

e Basic gates can be specified using operators:
o ~isal-input NOT
o &isa2-input AND
o | isaZ2-input OR
o All other gates can be built from combinations of these

e Other gate variants can be instantiated as built-in modules:
O <gate> <instance_name> (output, input, ..);
o eg,and g1 (F, A, B, C, D); // 4-input AND gate named gl

Combinational Logic in SystemVerilog

e assign - asingle continuous assignment statement
o The specified relationship will hold true for ALL time.
o eg,assign F = ~((A &B) | (C &D));

o Can have as many ass-ign statements as needed, but each must set a different
signal (i.e., no contention/conflicts).

Signals in SystemVerilog

e Basics:
o “Variables” still need to be declared but correspond to either wires (wire) or
variable voltage sources (reg)
o We will use logic for everything in this class (compiler resolves to wire/reg)
o A bus (multi-bit variable) can be declared by adding a dimension to the
variable type (e.g., logic [2:0])

Signals in SystemVerilog

e Basics:
o “Variables” still need to be declared but correspond to either wires (wire) or
variable voltage sources (reg)
o We will use logic for everything in this class (compiler resolves to wire/reg)
o A bus (multi-bit variable) can be declared by adding a dimension to the
variable type (e.g., logic [2:0])

e Signal manipulation:
o bus[#] - Get and individual value from a bus
o bus[#:#] - Get a group/slice of values from a bus
o { sig, sig, .. }(concatenation)- Create a new bus from an ordered
collection of existing signals
o {N{sig}} (replication)- Create a new bus from N copies of a signal
s

Coding Exercises

Exercise 1

e Write a SystemVerilog module that implements the Seat Belt Light circuit

from Lecture 1;

o SeatBeltLight (DriverBeltin, PassengerBeltin, Passenger)
o Don't mix-and-match - use either all built-in operators or all built-in gates

DBI
PBI
P

SBL

DBI

Exercise 1 (Solution) PBI SBL

e Module skeleton

module seatbelt_light (input logic DBI, PBI, P,
output logic SBL);

endmodule // seatbelt_light

DBI

Exercise 1 (Solution) PBI
P

e Version 1: using built-in operators, single assignment

SBL

module seatbelt_light_opsl(input logic DBI, PBI, P,
output logic SBL);

assign SBL = (~DBI) | (P & ~PBI);

endmodule // seatbelt_light_opsl

NOT_DBI

DBI

Exercise 1 (Solution) PBI
P

e Version 2: using built-in operators, with intermediate signals

SBL

module seatbelt_light_ops2(input logic DBI, PBI, P,
output logic SBL);

// Intermediate signals
logic NOT_DBI, NOT_PBI, A;

endmodule // seatbelt_light_ops?2

NOT_DBI

. . DBI
Exercise 1 (Solution) PBI
P

e Version 2: using built-in operators, with intermediate signals

SBL

module seatbelt_light_ops2(input logic DBI, PBI, P,
output logic SBL);

// Intermediate signals
logic NOT_DBI, NOT_PBI, A;

// Individual signal assignments
assign NOT_DBI ~DBI;

assign NOT_PBI ~PBI;

assign A P & NOT_PBI;
assign SBL A | NOT_DBI;

endmodule // seatbelt_light_ops?2

NOT_DBI

DBI

Exercise 1 (Solution) PBI SBL

e Version 3: using built-in gates

module seatbelt_light_gate(input logic DBI, PBI, P,
output logic SBL);

// Intermediate signals
logic NOT_DBI, NOT_PBI, A;

// Individual signal assignments

not gatel(NOT_DBI, DBI); // ~DBI

not gate2(NOT_PBI, PBI); // ~PBI

and gate3(A, P, NOT_PBI); // P & ~PBI

or gate4(SBL, A, NOT_DBI); // A | NOT_DBI

endmodule // seatbelt_light_gate

Comparator
e C(ircuit that compares two numbers.
o Inputs: o QOutputs:
m A first number m is_gt(>):
m B:second number m is_eq(=):
m Inputs assumed signed m is_lt(>):

A>B
A==
A<B

S—>
Comparator = —»
S
e C(ircuit that compares two numbers. 8
o Inputs: o QOutputs:

m A:first number m is_gt(>): A>B

m B:second number m is_eq(=): A==

m Inputs assumed signed m is_1t(>): A<B

e For simplicity, we will take advantage of the subtraction/minus (-)
operator in Verilog.
o 1s_1t: (Most significant bit of A-B) == 1 (negative)
o 1ds_eq: NOR all bits of A-B
o ds_gt: (MSBof A-B)==0AND ~1is_eq
o Note: these fail some edge cases but we will ignore those for now.

Exercise 2 : | : '

e Create a comparator module for 3-bit inputs. 8

Exercise 2 (Solution)

e Module skeleton

module comparator (input Tlogic [2:0] A, B,
output logic is_1t, is_gt, is_eq);

endmodule // comparator

Exercise 2 (Solution)

e Compute intermediate result

module comparator (input Tlogic [2:0] A, B,
output logic is_1lt, is_gt,

// subtraction result (intermediate)
logic [2:0] sub;
assign sub = A - Bj;

endmodule // comparator

is_eq);

Exercise 2 (Solution)

e Compute outputs

module comparator (input Tlogic [2:0] A, B,
output logic is_1t, is_gt, is_eq);

// subtraction result (intermediate)
logic [2:0] sub;
assign sub = A - Bj;

assign is_eq = ~(sub[0] | sub[1] | sub[2]);
assign is_Llt = sub[2];
assign is_gt = ~is_eq & ~is_1lt;

endmodule // comparator

Block Diagrams

e Block diagrams are the basic design tool for digital logic.

(@)

(@)

The diagram itself is a module — inputs and outputs shown and connected.
Major components are represented by blocks (“black boxes”) with their
internals abstracted away — each block becomes its own module.

All ports for each block should be shown and labeled and connected to the

appropriate part(s) of the rest of the system — sets your port connections.
Wires and gates can be added/shown as needed.

Block Diagrams

e Block diagrams are the basic design tool for digital logic.
o The diagram itselfis a module — inputs and outputs shown and connected.
o Major components are represented by blocks (“black boxes”) with their
internals abstracted away — each block becomes its own module.
o All ports for each block should be shown and labeled and connected to the

appropriate part(s) of the rest of the system — sets your port connections.
o Wires and gates can be added/shown as needed.

e From Wikipedia: The goal is to “[end] in block diagrams detailed enough
that each individual block can be easily implemented.”

o For designs that involve multiple modules, should always create your block
diagram before coding anything!

https://en.wikipedia.org/wiki/Block_diagram

Block Diagram Examples

e MUX2 from AOI (Lecture 2) e Ripple Carry Adder (Lecture 6)

As B: Az B2 As B Ao Bo

A O O R I

SEL Co Co FullAdder | ©* C4 FullAdder | © Cof Full Adder | St Col Full Adder

3 2 1 0

%

| |

S: Sz St So

Exercise 3

e Create a magic number guessing game using the comparator module:

o Your system should have a “secret” hard-coded number (you choose!).

m Reminder: a constant in SystemVerilog looks like 3'b001.
o SW[2:0] is the user’s guess.

KEY[0] is pressed this when the user is ready to check their guess (check).
m KEYs are active-low (i.e., © is “on").

LEDs should indicate the outcome of the guess if check is asserted:

m LEDR[0] should light up if the guess > the secret number (signed comparison).
m LEDR[1] should light up if the guess == the secret number.

m LEDR[2] should light up if the guess < the secret number (signed comparison).

1) Draw a block diagram of your proposed system
2) Implement the system in SystemVerilog

Exercise 3 (Solution) - Block Diagram

KEY[O]

SW[2]
SW[1]

SW[O]

alololo

Exercise 3 (Solution) - Block Diagram

kevio] [@}

swi2][@}=
swi1]| @
Dy

SW[O]

Secret -—
Number

Exercise 3 (Solution) - Block Diagram

<evio) (@}

swi2i[@® —~@)Le0R2)
swi1]|@ —~@)LeDR(1)
Sl ® —~@)L=0R(0)

Secret
Number

Exercise 3 (Solution) - Block Diagram

KEY[0]| @ Vo]
P
1s_gt
swi2]| @
2
SWI[2:0]
swi1]| @ is_eq
<
swi0]|@® |
is_ 1t

Secret
Number

Exercise 3 (Solution) - Code

module guessing_game (
output logic [9:0] LEDR,
input Tlogic [3:0] KEY,

e Module skeleton | input logic [9:0] SW
o Need DE1-SoC ports to use with iF
hardware.

endmodule // guessing_game

Exercise 3 (Solution) - Code

module guessing_game (
output logic [9:0] LEDR,
input Tlogic [3:0] KEY,

e Define intermediate signals input logic [9:0] Sw
o Needed for module port)3
connections and output lesie Je lt, S5_c, Jo s

computations.

endmodule // guessing_game

Exercise 3 (Solution) - Code

module guessing_game (
output logic [9:0] LEDR,
input logic [3:0] KEY,

e Module instantiation . .
input Tlogic [9:0] SW

o Hard-coding the secret number E
dlrectl.ylnto a port. | logic is_lt, is_eq, is_gt;
o Ordering of A and B connections
. . comparator number_comparator (
matters (subtraction is not LA(SW[2:0]),
commutative). .B(3'b001), // secret number
. . Lis_lt(dis_1t),
o Ordering of ports when using e E
explicit connections doesn’t matter. .is_gt(is_gt)

)3

endmodule // guessing_game

Exercise 3 (Solution) - Code

module guessing_game (
output logic [9:0] LEDR,
_ . input Tlogic [9:0] SW
o Ordering of assignments doesn't)3
matter because we're describing
hardware - could have been above
comparator number_comparator (

comparator instantiation! A(SW[2:0]),

.B(3'b00O1), // secret number
Lis_lt(dis_1t),
.is_eq(is_eq),
.is_gt(is_gt)
)5

assign LEDR[O]
assign LEDR[1]
assign LEDR[2]

logic is_1lt, is_eq, is_gt;

is_1lt & ~KEY[0O];
is_eq & ~KEY[0O];
is_gt & ~KEY[O];

endmodule // guessing_game

	Slide 1: CSE 369 Section 2
	Slide 2: Administrivia
	Slide 3: SystemVerilog Review
	Slide 4: What is SystemVerilog?
	Slide 5: Modules
	Slide 6: Logic Gates
	Slide 7: Combinational Logic in SystemVerilog
	Slide 8: Signals in SystemVerilog
	Slide 9: Signals in SystemVerilog
	Slide 10: Coding Exercises
	Slide 11: Exercise 1
	Slide 12: Exercise 1 (Solution)
	Slide 13: Exercise 1 (Solution)
	Slide 14: Exercise 1 (Solution)
	Slide 15: Exercise 1 (Solution)
	Slide 16: Exercise 1 (Solution)
	Slide 17: Comparator
	Slide 18: Comparator
	Slide 19: Exercise 2
	Slide 20: Exercise 2 (Solution)
	Slide 21: Exercise 2 (Solution)
	Slide 22: Exercise 2 (Solution)
	Slide 23: Block Diagrams
	Slide 24: Block Diagrams
	Slide 25: Block Diagram Examples
	Slide 26: Exercise 3
	Slide 27: Exercise 3 (Solution) – Block Diagram
	Slide 28: Exercise 3 (Solution) – Block Diagram
	Slide 29: Exercise 3 (Solution) – Block Diagram
	Slide 30: Exercise 3 (Solution) – Block Diagram
	Slide 31: Exercise 3 (Solution) – Code
	Slide 32: Exercise 3 (Solution) – Code
	Slide 33: Exercise 3 (Solution) – Code
	Slide 34: Exercise 3 (Solution) – Code

