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Relevant Course Information

+ Lab 6 — Connecting multiple FSMs in Tug of War game
= Bigger step up in difficulty from Lab 5
= Putting together complex system —interconnections!

= Bonus points for smaller resource usage
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Clock Divider (not for simulation)

<+ Why/how does this work?

// divided_clocks[0]=25MHz, [1]=12.5Mhz,
module clock_divider (clock, divided_clocks);
input logic clock;
output logic [31:0] divided_clocks;

initial
divided_clocks = 0;

always_ff @(posedge clock)
divided_clocks <= divided_clocks + 1;

endmodule // clock_divider
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Outline

«~ FSM Design
+ Multiplexors
« Adders
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FSM Design Process

1) Understand the problem
2) Draw the state diagram
3) Use state diagram to produce state table

4) Implement the combinational control logic
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L6: FSM Design, MUXes, Adders

Practice: String Recognizer FSM

+ Recognize the string 101 with the following behavior
"lhput: 1 O 01 010110010
" Qutput: 0 0 0 OO0 10100O0OO0OO0

+ State diagram to implementation:
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HDL Organization

« Most problems are best solved with multiple pieces — how to best
organize your system and code?

+ Everything is computed in parallel

= We use routing elements (next lecture) to select between (or ignore) multiple
outcomes/parts

= This is why we use block diagrams and waveforms

«» A module is not a function, it is closest to a class

= Something that you instantiate, not something that you call — hardware cannot
appear and disappear spontaneously

= Should treat modules as resource managers rather than temporary helpers
« This can include having internal modules
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Block Diagrams

+ Block diagrams are the basic design tool for digital logic.
" The diagram itself is a module — inputs and outputs shown and connected

= Major components are represented by blocks (“black boxes”) with their internals
abstracted away — each block becomes its own module

= All ports for each block should be shown and labeled and connected to the
appropriate part(s) of the rest of the system — sets your port connections

= Wires and other basic building blocks can be added/shown as needed

+» From Wikipedia: The goal is to “[end] in block diagrams detailed enough
that each individual block can be easily implemented.”

= For designs that involve multiple modules, should always create your block
diagram before coding anything!


https://en.wikipedia.org/wiki/Block_diagram
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Subdividing FSMs Example

« “Psychic Tester”
" Machine generates a 4-bit pattern
= User tries to guess 8 patterns in a row to be deemed psychic

«» States?
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Example: Plan First with Block Diagram

+ Pieces?
= Generate/pick pattern

= User input (guess)
" Check guess

= Count correct guesses

10
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Example: Blocks - Modules

+ Pieces?
= Generate/pick pattern
- module genPatt (pattern, next, clock);
= User input (guess)
- module userIn (guess, submit, KEY);
" Check guess
- module checkGuess (correct, guess, pattern);
= Count correct guesses
- module countRight (psychic, next, correct, submit, clock);

CSE369, Winter 2025

11



CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders

Example: Implementation & Testing

1) Create individual submodules

2) Create submodules test benches — test as usual
® CL - run through all input combinations
= SL —take every transition that you care about

3) Create top-level module
= Create instance of each submodule
= Create wires/nets to connect signals between submodules, inputs, and outputs

4) Create top-level test bench

® Goal is to check the interconnections between submodules — does input/state
change in one submodule trigger the expected change in other submodules?
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Outline

«» FSM Design
<+ Multiplexors
« Adders
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Data Multiplexor

L6: FSM Design, MUXes, Adders

+ Multiplexor (“MUX") is a selector

" Direct one of many (N = 25) n-bit wide inputs onto output

= Called a n-bit, N-to-1 MUX

« Example: n-bit 2-to-1 MUX

" Input S (s bits wide) selects between two inputs of n bits each

N inputs —

This input is passed to
output if selector bits
match shown value

CSE369, Winter 2025
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Review: Implementing a 1-bit 2-to-1 MUX

<+ Schematic:

<« Truth Table:

@
b

70

R PR RPRR OO O Oln

R PO OKHRKE O O|Y

H Ok OKFK O O|T

P ORrRrRORFLEFEF O OINn

+ Boolean Algebra:

- ¢ = 3ab+ Sab+ sab + sab
= 5(ab + ab) + s(ab + ab)
(a(b+0))+ s((@+ a)b)

(a(1) + s((1)b)

W | ® »

a + sb

CSE369, Winter 2025

15



WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

1-bit 4-to-1 MUX

» Schematic: a b c A

RN
\oo o\\\ “j"+_g= <%

o

< Truth Table: How many rows?

+ Boolean Expression:
e = 51S0a + S1Sob + s15¢C + 5150d

16
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1-bit 4-to-1 MUX

+ Can we leverage what we’ve previously built?
= Alternative hierarchical approach:

17
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Multiplexers in General Logic

» Implement F = XYZ + YZ with a 8:1 MUX

|
/

~N~No ubh WDN R
(00)
[y
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Technology
Break
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Outline

«» FSM Design
+ Multiplexors
+~ Adders
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Review: Unsigned Integers

+» Unsigned values follow the standard base 2 system
u b7b6b5b4b3b2b1b0 - b727 + b626 + -+ b121 + b020

» In n bits, represent integers 0 to 2™-1
+ Add and subtract using the normal “carry” and “borrow” rules, just in

binary

63 00111111 64 01000000
+_ 8 +00001000 -_8 -00001000
71 01000111 56 00111000

21
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Review: Two’s Complement (Signed)

b,,_; has weight —2%~1, other bits have usual weights +2!

bw-l bw-2

+ Properties:

" |n n bits, represent integers —2" 1 to 21 — 1

1111
1110
1101

1100

0000
0001
0010

0011

= Positive number encodings match
unsigned numbers

= Single zero (encoding = all zeros) Two’s
|
_g|\1011  Complement o109

1010

+ Negation procedure:

= Take the bitwise complement -6\ 1001
and then add one 1000 0111
(~x + 1 == =-x ) -8 +7

22
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Addition and Subtraction in Hardware

+» The same bit manipulations work for both unsigned and two’s
complement numbers!

= Perform subtraction via adding the negated 2" operand:
A—-B=A+4+(-B)=A+(~B)+1

+ 4-bit examples: Two’s Un Two’s Un
OO10 +2 2 1000 -8 8

+1100 -4 12 +0100 +4 4

@110 +6 6 1111 -1 15

-0010 +2 2 -1110 -2 14

23
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Half Adder (1 bit)

Carry = agby
+ b3 b2 b1 bo Sum = ay @ by

Carry-out bit

a, by|ct s, Half Adder

© 0/0 0 0[® '

o 1|0 1 T?D_@)S“m
1 00 1 bo[©®

1 1|1 0 ‘

©

Carry
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Full Adder (1 bit)

Possible
/\carry—m Cq
d3 do | 41 | Ao s; = XOR(ay, b;, ¢;)

+ b3 b2 b1 b() c;+1 = MAJ(a;, b;, c;)

Clibl' + a;c; + biCi

Carry-in Carry-out cary n[®] £.1 adder
ci a; by C-ilfl Si B |
© 0 0] 0 0 .I_ ) D>———@sum
© 0 1|0 1
o 1 0|0 1 i
© 1 1|1 0 H
1 0 0/060 1
1 0 1]1 0o -
1 1 0|1 0 O
11 1|1 1 camy out
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Multi-Bit Adder (N bits)

+ Chain 1-bit adders by connecting CarryOut; to Carryln,, ;:

bV\’l a—h'l b' ( bo CLO

L 4
| + ‘_C_M. . .C:_, + = + €a
\ l

So

CV\"“'—J

n-1

26



WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Subtraction?

« Can we use our multi-bit adder to do subtraction?

= Flip the bits and add 1?
- XP1=X
« Carryln, (using full adder in all positions)

ba-1 Gan-i b, a, by, o

L i
| + ‘_C_M. . .C:_, + = + €a
\ l

So

CV\"“'—J

n-1

27



WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Multi-bit Adder/Subtractor

bv\-\ G-\ b a, be Qo

x@1= f—>§7 /Add 1
(flips the bits) ‘J
| Cnii Ca j‘ G co‘/
CV\ -] + G o * o+ A + + /SUB

l l This signal is only
high when you

Sn-i S\ Se  perform subtraction
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Detecting Arithmetic Overflow

+ Overflow: When a calculation produces a result that can’t be
represented in the current encoding scheme

" Integer range limited by fixed width
= Can occur in both the positive and negative directions

» Unsigned Overflow

= Result of add/sub is > UMax or < Umin

» Signed Overflow
= Result of add/sub is > TMax or < TMin
" (F)+(+)=(=) or (=) +(=)=(+)

CSE369, Winter 2025
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Signed Overflow Examples

Two’s
©101 +5
+0011 +3

Two’s
©101 +5
+0010 +2

Two's
1001 -7
+1110 -2
Two's
1100 -4
+0100 4

30
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Multi-bit Adder/Subtractor with Overflow

‘bv\-\ C\v\.\ bl a\ bo ao

Ir s
v

Y_CL+‘%“.;‘...CL+ < 4 =——sve

[

~__L »
? Sv\-\ S\ So
O\Je\"nou)
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Arithmetic and Logic Unit (ALU)

+ Processors contain a special logic block called the “Arithmetic and Logic

Unit” (ALU)

= Here’s an easy one that does ADD, SUB, bitwise AND, and bitwise OR (for 32-bit

numbers)

+ Schematic:

when S=00, R=A+B
when S=01, R=A-B
when S=10, R = A&B
whenS=11,R=A|B

32
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Simple ALU Schematic

A B
32 %31
LT 1
. &a&/su\frmcﬂ AND L oR
32 [ 32

over{ lowy l

r3z

?ﬁ

Notice that 3 values

are ALWAYS calculated ST &
in parallel, but only 1 32
makes it to the Result |

33
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1-bit Adders in Verilog

+» What’s wrong with this?

® Truncation!

« Fixed:

= Useof {sig, .., sig} for concatenation

L6: FSM Design, MUXes, Adders

module halfaddl (s, a, b);
output logic s;
input logic a, b;

always_comb begin
s = a + b;
end
endmodule

module halfadd2 (c, s, a,
output logic ¢, s;
input logic a, b;

always_comb begin
{c, s} = a + b;
end
endmodule

b) ;

CSE369, Winter 2025
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Ripple-Carry Adder in Verilog

K/
0’0

module fulladd (cout, s, cin, a, b);
output logic cout, s;
input logic cin, a, b;

always_comb begin
{cout, s} = c¢in + a + b;
end
endmodule

Chain full adders?

module add2 (cout, s, cin, a, b);
output logic cout; output logic [1:0] s;

input logic cin; 1input logic [1:0] a, b;

logic c1;

fulladd bl (cout, s[1], €1, a[l], b[1]);
fulladd bo (c1, s[0], cin, a[0], b[0]);
endmodule

35
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Add/Sub in Verilog (parameterized)

+ Variable-width add/sub (with overflow, carry)

module addN #(parameter N=32) (OF, CF, S, sub, A, B);

output logic OF, CF;
output logic [N-1:0] S;
input Tlogic sub;

input Tlogic [N-1:0] A, B;
logic [N-1:0] D; // possibly flipped B
logic C2; // second-to-last carry-out

always_comb begin
D =B A {N{sub}}; // replication operator
{€C2, S[N-2:0]} = A[N-2:0] + D[N-2:0] + sub;
{CF, S[N-1]} = A[N-1] + D[N-1] + C2;
OF = CF " C2;
end
endmodule // addN

= Here using OF = overflow flag, CF = carry flag (from condition flags in x86-64 CPUs)

36
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Add/Sub in Verilog (parameterized)

module addN_tb ();
parameter N = 43

logic sub;
logic [N-1:0] A, B;
logic OF, CF;

logic [N-1:0] S;
addN #(.N(N)) dut (.OF, .CF, .S, .sub, .A, .B);

initial begin

#100; sub = 0; A = 4'b0101l; B = 4'b0010; // 5 + 2
#100; sub = 0; A = 4'bl1101; B = 4'blell; // -3 + -5
#100; sub = 0; A = 4'b0101; B = 4'be011; // 5 + 3
#100; sub = 0; A = 4'ble01; B = 4'bl1110; // -7 + -2
#100; sub = 1; A = 4'b0101; B = 4'b1110; // 5 -(-2)
#100; sub = 1; A = 4'bl1101l; B = 4'b0101; // -3 - 5
#100; sub = 1; A = 4'b0101l; B = 4'bl101l; // 5 -(-3)
#100; sub = 1; A = 4'b1001; B = 4'b0e010; // -7 - 2
#100;
end

endmodule // addN_tb
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