WA/ UNIVERSITY of WASHINGTON

Intro to Digital Design

Instructor: Chris Thachuk

Teaching Assistants:
Jiuyang Lyu Nandini Talukdar

Stephanie Osorio-Tristan Wen Li

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders

Relevant Course Information

+ Lab 6 — Connecting multiple FSMs in Tug of War game
= Bigger step up in difficulty from Lab 5
= Putting together complex system —interconnections!

= Bonus points for smaller resource usage

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Clock Divider (not for simulation)

<+ Why/how does this work?

// divided_clocks[0]=25MHz, [1]=12.5Mhz,
module clock_divider (clock, divided_clocks);
input logic clock;
output logic [31:0] divided_clocks;

initial
divided_clocks = 0;

always_ff @(posedge clock)
divided_clocks <= divided_clocks + 1;

endmodule // clock_divider

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Outline

«~ FSM Design
+ Multiplexors
« Adders

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders

FSM Design Process

1) Understand the problem
2) Draw the state diagram
3) Use state diagram to produce state table

4) Implement the combinational control logic

WA/ UNIVERSITY of WASHINGTON

L6: FSM Design, MUXes, Adders

Practice: String Recognizer FSM

+ Recognize the string 101 with the following behavior
"lhput: 1 O 01 010110010
" Qutput: 0 0 0 OO0 10100O0OO0OO0

+ State diagram to implementation:

CSE369, Winter 2025

00 01 11 10 00 01 11 10 00 01 11 10
0 0
1 1
Ou!@_

@ln

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

HDL Organization

« Most problems are best solved with multiple pieces — how to best
organize your system and code?

+ Everything is computed in parallel

= We use routing elements (next lecture) to select between (or ignore) multiple
outcomes/parts

= This is why we use block diagrams and waveforms

«» A module is not a function, it is closest to a class

= Something that you instantiate, not something that you call — hardware cannot
appear and disappear spontaneously

= Should treat modules as resource managers rather than temporary helpers
« This can include having internal modules

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Block Diagrams

+ Block diagrams are the basic design tool for digital logic.
" The diagram itself is a module — inputs and outputs shown and connected

= Major components are represented by blocks (“black boxes”) with their internals
abstracted away — each block becomes its own module

= All ports for each block should be shown and labeled and connected to the
appropriate part(s) of the rest of the system — sets your port connections

= Wires and other basic building blocks can be added/shown as needed

+» From Wikipedia: The goal is to “[end] in block diagrams detailed enough
that each individual block can be easily implemented.”

= For designs that involve multiple modules, should always create your block
diagram before coding anything!

https://en.wikipedia.org/wiki/Block_diagram

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Subdividing FSMs Example

« “Psychic Tester”
" Machine generates a 4-bit pattern
= User tries to guess 8 patterns in a row to be deemed psychic

«» States?

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Example: Plan First with Block Diagram

+ Pieces?
= Generate/pick pattern

= User input (guess)
" Check guess

= Count correct guesses

10

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders

Example: Blocks - Modules

+ Pieces?
= Generate/pick pattern
- module genPatt (pattern, next, clock);
= User input (guess)
- module userIn (guess, submit, KEY);
" Check guess
- module checkGuess (correct, guess, pattern);
= Count correct guesses
- module countRight (psychic, next, correct, submit, clock);

CSE369, Winter 2025

11

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders

Example: Implementation & Testing

1) Create individual submodules

2) Create submodules test benches — test as usual
® CL - run through all input combinations
= SL —take every transition that you care about

3) Create top-level module
= Create instance of each submodule
= Create wires/nets to connect signals between submodules, inputs, and outputs

4) Create top-level test bench

® Goal is to check the interconnections between submodules — does input/state
change in one submodule trigger the expected change in other submodules?

12

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Outline

«» FSM Design
<+ Multiplexors
« Adders

13

WA/ UNIVERSITY of WASHINGTON

Data Multiplexor

L6: FSM Design, MUXes, Adders

+ Multiplexor (“MUX") is a selector

" Direct one of many (N = 25) n-bit wide inputs onto output

= Called a n-bit, N-to-1 MUX

« Example: n-bit 2-to-1 MUX

" Input S (s bits wide) selects between two inputs of n bits each

N inputs —

This input is passed to
output if selector bits
match shown value

CSE369, Winter 2025

14

WA/ UNIVERSITY of WASHINGTON

L6: FSM Design, MUXes, Adders

Review: Implementing a 1-bit 2-to-1 MUX

<+ Schematic:

<« Truth Table:

@
b

70

R PR RPRR OO O Oln

R PO OKHRKE O O|Y

H Ok OKFK O O|T

P ORrRrRORFLEFEF O OINn

+ Boolean Algebra:

- ¢ = 3ab+ Sab+ sab + sab
= 5(ab + ab) + s(ab + ab)
(a(b+0))+ s((@+ a)b)

(a(1) + s((1)b)

W | ® »

a + sb

CSE369, Winter 2025

15

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

1-bit 4-to-1 MUX

» Schematic: a b c A

RN
\oo o\\\ “j"+_g= <%

o

< Truth Table: How many rows?

+ Boolean Expression:
e = 51S0a + S1Sob + s15¢C + 5150d

16

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

1-bit 4-to-1 MUX

+ Can we leverage what we’ve previously built?
= Alternative hierarchical approach:

17

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Multiplexers in General Logic

» Implement F = XYZ + YZ with a 8:1 MUX

|
/

~N~No ubh WDN R
(00)
[y

18

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Technology
Break

19

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Outline

«» FSM Design
+ Multiplexors
+~ Adders

20

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Review: Unsigned Integers

+» Unsigned values follow the standard base 2 system
u b7b6b5b4b3b2b1b0 - b727 + b626 + -+ b121 + b020

» In n bits, represent integers 0 to 2™-1
+ Add and subtract using the normal “carry” and “borrow” rules, just in

binary

63 00111111 64 01000000
+_ 8 +00001000 -_8 -00001000
71 01000111 56 00111000

21

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Review: Two’s Complement (Signed)

b,,_; has weight —2%~1, other bits have usual weights +2!

bw-l bw-2

+ Properties:

" |n n bits, represent integers —2" 1 to 21 — 1

1111
1110
1101

1100

0000
0001
0010

0011

= Positive number encodings match
unsigned numbers

= Single zero (encoding = all zeros) Two’s
|
_g|\1011 Complement o109

1010

+ Negation procedure:

= Take the bitwise complement -6\ 1001
and then add one 1000 0111
(~x + 1 == =-x) -8 +7

22

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Addition and Subtraction in Hardware

+» The same bit manipulations work for both unsigned and two’s
complement numbers!

= Perform subtraction via adding the negated 2" operand:
A—-B=A+4+(-B)=A+(~B)+1

+ 4-bit examples: Two’s Un Two’s Un
OO10 +2 2 1000 -8 8

+1100 -4 12 +0100 +4 4

@110 +6 6 1111 -1 15

-0010 +2 2 -1110 -2 14

23

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Half Adder (1 bit)

Carry = agby
+ b3 b2 b1 bo Sum = ay @ by

Carry-out bit

a, by|ct s, Half Adder

© 0/0 0 0[® '

o 1|0 1 T?D_@)S“m
1 00 1 bo[©®

1 1|1 0 ‘

©

Carry

24

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Full Adder (1 bit)

Possible
/\carry—m Cq
d3 do | 41 | Ao s; = XOR(ay, b;, ¢;)

+ b3 b2 b1 b() c;+1 = MAJ(a;, b;, c;)

Clibl' + a;c; + biCi

Carry-in Carry-out cary n[®] £.1 adder
ci a; by C-ilfl Si B |
© 0 0] 0 0 .I_) D>———@sum
© 0 1|0 1
o 1 0|0 1 i
© 1 1|1 0 H
1 0 0/060 1
1 0 1]1 0o -
1 1 0|1 0 O
11 1|1 1 camy out

25

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Multi-Bit Adder (N bits)

+ Chain 1-bit adders by connecting CarryOut; to Carryln,, ;:

bV\’l a—h'l b' (bo CLO

L 4
| + ‘_C_M. . .C:_, + = + €a
\ l

So

CV\"“'—J

n-1

26

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Subtraction?

« Can we use our multi-bit adder to do subtraction?

= Flip the bits and add 1?
- XP1=X
« Carryln, (using full adder in all positions)

ba-1 Gan-i b, a, by, o

L i
| + ‘_C_M. . .C:_, + = + €a
\ l

So

CV\"“'—J

n-1

27

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Multi-bit Adder/Subtractor

bv\-\ G-\ b a, be Qo

x@1= f—>§7 /Add 1
(flips the bits) ‘J
| Cnii Ca j‘ G co‘/
CV\ -] + G o * o+ A + + /SUB

l l This signal is only
high when you

Sn-i S\ Se perform subtraction

28

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders

Detecting Arithmetic Overflow

+ Overflow: When a calculation produces a result that can’t be
represented in the current encoding scheme

" Integer range limited by fixed width
= Can occur in both the positive and negative directions

» Unsigned Overflow

= Result of add/sub is > UMax or < Umin

» Signed Overflow
= Result of add/sub is > TMax or < TMin
" (F)+(+)=(=) or (=) +(=)=(+)

CSE369, Winter 2025

29

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders

CSE369, Winter 2025

Signed Overflow Examples

Two’s
©101 +5
+0011 +3

Two’s
©101 +5
+0010 +2

Two's
1001 -7
+1110 -2
Two's
1100 -4
+0100 4

30

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Multi-bit Adder/Subtractor with Overflow

‘bv\-\ C\v\.\ bl a\ bo ao

Ir s
v

Y_CL+‘%“.;‘...CL+ < 4 =——sve

[

~__L »
? Sv\-\ S\ So
O\Je\"nou)

31

WA/ UNIVERSITY of WASHINGTON

L6: FSM Design, MUXes, Adders

CSE369, Winter 2025

Arithmetic and Logic Unit (ALU)

+ Processors contain a special logic block called the “Arithmetic and Logic

Unit” (ALU)

= Here’s an easy one that does ADD, SUB, bitwise AND, and bitwise OR (for 32-bit

numbers)

+ Schematic:

when S=00, R=A+B
when S=01, R=A-B
when S=10, R = A&B
whenS=11,R=A|B

32

W UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Simple ALU Schematic

A B
32 %31
LT 1
. &a&/su\frmcﬂ AND L oR
32 [32

over{ lowy l

r3z

?ﬁ

Notice that 3 values

are ALWAYS calculated ST &
in parallel, but only 1 32
makes it to the Result |

33

WA/ UNIVERSITY of WASHINGTON

1-bit Adders in Verilog

+» What’s wrong with this?

® Truncation!

« Fixed:

= Useof {sig, .., sig} for concatenation

L6: FSM Design, MUXes, Adders

module halfaddl (s, a, b);
output logic s;
input logic a, b;

always_comb begin
s = a + b;
end
endmodule

module halfadd2 (c, s, a,
output logic ¢, s;
input logic a, b;

always_comb begin
{c, s} = a + b;
end
endmodule

b) ;

CSE369, Winter 2025

34

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders

Ripple-Carry Adder in Verilog

K/
0’0

module fulladd (cout, s, cin, a, b);
output logic cout, s;
input logic cin, a, b;

always_comb begin
{cout, s} = c¢in + a + b;
end
endmodule

Chain full adders?

module add2 (cout, s, cin, a, b);
output logic cout; output logic [1:0] s;

input logic cin; 1input logic [1:0] a, b;

logic c1;

fulladd bl (cout, s[1], €1, a[l], b[1]);
fulladd bo (c1, s[0], cin, a[0], b[0]);
endmodule

35

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Add/Sub in Verilog (parameterized)

+ Variable-width add/sub (with overflow, carry)

module addN #(parameter N=32) (OF, CF, S, sub, A, B);

output logic OF, CF;
output logic [N-1:0] S;
input Tlogic sub;

input Tlogic [N-1:0] A, B;
logic [N-1:0] D; // possibly flipped B
logic C2; // second-to-last carry-out

always_comb begin
D =B A {N{sub}}; // replication operator
{€C2, S[N-2:0]} = A[N-2:0] + D[N-2:0] + sub;
{CF, S[N-1]} = A[N-1] + D[N-1] + C2;
OF = CF " C2;
end
endmodule // addN

= Here using OF = overflow flag, CF = carry flag (from condition flags in x86-64 CPUs)

36

WA/ UNIVERSITY of WASHINGTON L6: FSM Design, MUXes, Adders CSE369, Winter 2025

Add/Sub in Verilog (parameterized)

module addN_tb ();
parameter N = 43

logic sub;
logic [N-1:0] A, B;
logic OF, CF;

logic [N-1:0] S;
addN #(.N(N)) dut (.OF, .CF, .S, .sub, .A, .B);

initial begin

#100; sub = 0; A = 4'b0101l; B = 4'b0010; // 5 + 2
#100; sub = 0; A = 4'bl1101; B = 4'blell; // -3 + -5
#100; sub = 0; A = 4'b0101; B = 4'be011; // 5 + 3
#100; sub = 0; A = 4'ble01; B = 4'bl1110; // -7 + -2
#100; sub = 1; A = 4'b0101; B = 4'b1110; // 5 -(-2)
#100; sub = 1; A = 4'bl1101l; B = 4'b0101; // -3 - 5
#100; sub = 1; A = 4'b0101l; B = 4'bl101l; // 5 -(-3)
#100; sub = 1; A = 4'b1001; B = 4'b0e010; // -7 - 2
#100;
end

endmodule // addN_tb

37

