Intro to Digital Design

Instructor: Chris Thachuk

Teaching Assistants:
Jiuyang Lyu Nandini Talukdar

Stephanie Osorio-Tristan Wen Li

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Relevant Course Information

+ Lab 3 Demos due during your assigned demo slots

= Don’t forget to submit your lab materials before Wednesday at 2:30 pm, regardless
of your demo time

+» Lab 4 — Extension of Lab 3 using 7-seg displays

+» Quiz 1is next week in lecture
= Last 20 minutes, worth 10% of your course grade
® On Lectures 1-3: CL, K-maps, Waveforms, and Verilog
= Past Quiz 1 (+ solutions) on website: Course Info — Quizzes

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Synchronous Digital Systems (SDS)

<~ Combinational Logic (CL)

X, —» —> 7 = Network of logic gates without feedback

X, —» Logi —> 7 . .

:2 Neff,';rk :2 " Qutputs are functions only of inputs

X, —> —> 7,

6equential Logic (SL)

X, —> — 7, = The presence of feedback introduces the notion of

X;—» Logic [—>Z “state”

: Net k : . . 7 ” . :
. T . = Circuits that can “remember” or store information

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Uses for Sequential Logic

+ Place to store values for some amount of time:
= Registers
" Memory |
J“mmw\j ,
+ Help control flow of information between combinational logic blocks

" Hold up the movement of information to allow for orderly passage through CL

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

Control Flow of Information?

% Circuits can temporarily go to incorrect states!

Copilot Autopilot Request B
Pilot in Charge? Autopilot Engaged
Pilot Autopilot Request C
CAR |1
PiCclt o
parlT 1
alo T
Blo T T T
o I ww&ﬂ/w*r‘d o
: C 1 ; : = T 5 o Velhoviod - - 5w
[N N N B N
AE 11 . 3 : u :

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Accumulator Example

+ An example of why we would need to control the flow of information.

X. /—> Accumulator —> S
» Want: S = Qjintialize”
for (1 = 0; 1 < nj; 1++)
—_ ° — gto o, .Tt,n

LsfﬂlurncE f:TF ‘“W+S
< Assume:

= Each X value is applied in succession, one per cycle
"= The sum since cycle Ois presenton S

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Accumulator: First Try

+» Does this work? S=S+X
[| NO l
X L 34y, (iibially 7)
SyEe—sS,
|
[P ?:i;tli\i’{mewj

1) How to control the next iteration of the ‘for’ loop?
2) How do we accomplish ‘S = 0’7

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

State Element: Flip-Flop CUR

A -
+ Positive edge-triggered D-type flip flop FF | ‘i,
" On the rising edge of the clock (¢ §.L), input d is sampled and transferred to the
output g

= At all other times, the input d is ignored and the previously sampled value is
retained

.--.|----
‘LJ

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

State Element: Register

d;-j) noute bw dl.v:\ Ao Qo
D s

ot 45 = g [
& r LRl S
{n %nol C[h;;_ 9o

+» m instances of flip-flops together
" One for every bit in input/output bus width

+» Output Q resets to zero when Reset signal is high during clock trigger

= Some extra circuitry required for this

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Accumulator: Second Try

.8 7 Register holds up the

s transfer of data to adder
€aad
{ m{)‘\d_ D/

vesel Ye,gf\st’a LOAD/ LK

o LM

Delay through Register and Adder —>| |<— i . i B
Rough S e T et Toermake Yoo
timing | | | |
diagram P J *o 1 X} Xz { X3 I

Time >

10

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Flip-Flop Timing Terminology (1/2)

+» Camera Analogy: non-blurry digital photo
" Don’t move while camera shutter is opening
" Don’t move while camera shutter is closing
" Check for blurriness once image appears on the display

11

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

Flip-Flop Timing Terminology (2/2)

+» Now applied to sequential logic elements:

= Setup Time: how long the input must be stable before the CLK trigger for proper
input read

" Hold Time: how long the input must be stable after the CLK trigger for proper
input read

" “CLK-to-Q” Delay: how long it takes the output to change, measured from the CLK
trigger

12

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Flip-Flop Timing Behavior

CLIN

L —IFF 9

' |

CAK B P Input datee muct be stable
| I~ ':\vtgﬂis peried.
|

Lo

e [—— tek-to-4" dday
' J

T

13

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

CSE369, Winter 2025

Accumulator: Proper Timing

reset signal shown
» X;and S;_; arrive at adder at different times

= S. becomes “wrong” temporarily but corrects before
register captures its value

» Avoid input instability around rising edge of CLK

S¢- Yo (ederndl)

'S e e e T e T ST, — l‘:—- chK-—rof7,

e 'l_'E’.mpnrar;l}e e 0

14

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Review Question

+ Which of the following statements is TRUE?

(A)

L0~ $€+up é,lv\u\& 'l"ime:.

B) A flip-flop switches betweenr8-andi on each trigger.
() P P inp\ﬂ' D— m‘\'be"' Q 58

(C) In a SDS, we only need to know setup time, hold time, and clk-to-g

delay constants to ensure correct behavior. 4% w:c* ?L aﬁ;; clbd; periad.,
exlernal inpw Im‘ur\j} .

(D) | None of the above.

15

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Model for Synchronous Digital Systems

clock _[1] | input

input | o) OUIPLL

+» Combinational logic blocks separated by registers
" Clock signal connects only to sequential logic elements

= Feedback is optional depending on application

+» How do we ensure proper behavior?

" How fast can we run our clock?

16

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

When Can the Input Change?

+ When a register input changes shouldn’t violate hold time (t;,,;4) or
setup time (tgetqp) cOnstraints within a clock period (t,eripq)

= Let tippye,; be the time it takes for the input of a register to change for

the i-th timein a sinéle clock cycle, measured from the CLK trigger:
i @
" Then we need ty10 < tinpur,i = tperioa — Lserup foralli

= Two separate constraints!

O o
f 7//\
It W_ [
@ {lhpn-hl = 'él,uu %‘Y— éwma ’—'ﬁ|
@ -éiﬂpu{“,*h_ é {Pnn‘b& - ‘f_ic[-._,[: __#7 l’——fh;l -Efﬁ.“]g_)"‘ [{_'_‘“r“*.ﬂ
1/. w*fi“rﬁ_lr f/ |
'/| o 1

//,I {ﬁsn‘ni' ty-h.[: |/ /|

CSE369, Winter 2025

17

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Minimum Delay

+ |f shortest path to register input is too short, might violate t;,,;4
constraint
" |nput could change before state is “locked in”
= Particularly problematic with asynchronous signals

|nputs OUtEUtS
& e T Combirfational : :
aral 5/{txema] omLIo a_ lona Mln DElay = mln(Cl_K'to_Q Delay
I — +)
ﬁext St;eL‘ Min CL Delay)
‘> Register Min Delay = Hold Time
Current Statg‘lG2

18

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Maximum Clock Frequency

+» What is the max frequency of this circuit?

= Limited by how much time needed to get correct Next State to Register
(tsetup CONstraint)

Inputs Outputs
(1% % T Combifational I
’ Lobi Max Delay= max(CLK-to-Q Delay
_’_T ; |
ig‘ext State + Max CL Delay)
‘> Register Min Period = Max Delay + Setup Time
Ml& Max Freq = 1/Min Period

19

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

The Critical Path

= The critical path is the longest delay between any two registers in a
circuit

+» The clock period must be longer than this critical path, or the signal will
not propagate properly to that next register

Critical Path =
CLK-to-Q Delay
+ CL Delay 1
+ CL Delay 2
+ CL Delay 3
+ Adder Delay
+ Setup Time

Bau\<
=
l
89y <

20

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

walli 107

Practice Question l o micro |07,

nond O

ﬁe{: 0's” ‘—‘?Perm& 15°s =1ns = [000ps pice 107

» We want to run on 1 GHz processor. t,4,= 100 ps, t,. . = 200 ps,
tsetup = thoig = 50 ps. What is the maximum t 4., We can use?

Z £ -
-éhald £ |é _é[.?? n:aak {IELF?

A —

21

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Technology
Break

22

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Where Do Timing Terms Come From?

Edge-triggered
D flip-flop:

Clocko—

Q|

Datac

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=40852354

23

https://commons.wikimedia.org/w/index.php?curid=40852354

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Safe Sequential Circuits

+» Clocked elements on feedback, perhaps outputs
" Clock signal synchronizes operation

" Clocked elements hide glitches/hazards

_> [
X1 L |Z1
X2 Logic —__;'\Zz
Network N
- E,,.__Jsans‘\'efj
—>

Data' Compute %Valid X Compute * Valid X Compute 4(
! | I I

ol &Y & 5“"'"’“?‘: L\I&ppeﬂ Lu#:':‘: -7 'f,e*‘,? 'H'fmil "

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Autopilot Revisited

+ Flip-flops can “filter out” unintended behavior:
h sﬁxﬁe” st {ngd’rﬁﬁ AN

CLK|™L L

Q] CAR _

Copilot Autopilot Request Dgo D— DEF
-F @Q = Autopilot Engaged ([1,['1’)

E
o "E @Q PIC Dend
Pilot in Charge? Deno }
' PAR
Pilot Autopilot Request e S

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Waveform Diagrams Revisited

+ Easiest to start with CLK on top
= Solve signal by signal, from inputs to outputs

= Can only draw the waveform for a signal if all of its input waveforms are drawn

+ When does a signal update?

Cs
= Astate efegment updates based on CLK triggers
CclL
= A combination)al element updates ANY time ANY of its inputs changes

26

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Example: SDS Waveform Diagram

= Assume: tgyq = 3 ticks, typp = 2 ticks, tyor = 1 tick; tg =t =0

= Note: clocking the gate is a terrible idea

27

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Verilog: Basic D Flip-Flop, Register

module basic_D_FF (g, d, clk);
output logic q; // g is state-holding
input logic d, clk;
L/_..- read' +<:: b"fS[hﬁ e&jEj
always_ff @(posedge clk) of <k sigral
& <= d; // use <= for clocked elements
endmodule

module basic_reg (q, d, clk);
output logic [7:0] q;
input logic [7:0] d;

b
input logic clk;
s widdhr oF €
always_ff @(posedge clk)
q_<> d;

endmodule

CSE369, Winter 2025

28

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Procedural Blocks

+ always: loop to execute over and over again
= Block gets triggered by a sensitivity list

= Any object that is assigned a value in an always statement must be declared as a
variable (Logic or reg).

= Example:
- always @ (posedge clk)

+» always_Tf: special SystemVerilog for SL
= Only for use with sequential logic — signal intent that you want flip-flops

= Example:
- always_ff @ (posedge clk)

29

WA/ UNIVERSITY of WASHINGTON

Blocking vs. Nonblocking

L4: Sequential Logic

CSE369, Winter 2025

+ Blocking statement (=): statement effects evaluated sequentially
= Resembles programming languages

<+ Nonblocking statement (<=): statement effects evaluated “in parallel”

" Resembles hardware

«» Example: always_ff @ (posedge clk)
begin
b = a;
cC = b;
end

B
0 0
DQ D Q]

CLK|J™

A

always_ff @ (posedge clk)
begin

b <= a;

c <= b;
end

CLK|J™

30

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

SystemVerilog Coding Guidelines

1) When modeling sequential logic, use nonblocking assignments

2) When modeling combinational logic with an always_comb block, use
blocking assignments

3) When modeling both sequential and combinational logic within the same
always_TT block, use nonblocking assignments

4) Do not mix blocking and nonblocking assignments in the same always_x*
block

5) Do not make assignments to the same variable from more than one
always_* block

31

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Verilog: Reset Functionality

. :
D Deno
(Reset

+ Option 1: synchronous reset

module D_FF1 (q, d, reset, clk);
output logic q; // g is state-holding
input Tlogic d, reset, clk;

always_ff @(posedge clk)
if (reset) — reset @n mly olcur o~ clock +r153er

q <= 0; // on reset, set to 0
else
q <= d; // otherwise pass d to g

endmodule

32

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

CSE369, Winter 2025

Verilog: Reset Functionality

. illlii :
D Deno

Reset

+» Option 2: asynchronous reset

module D_FF1 (q, d, reset, clk);
output logic q; // g is state-holding
input 1logic d, reset, clk; any rad paedse,
/—LJﬂ:re » the clock
always_ff @(posedge clk or posgﬂge reset)
if (reset)

q <= 0; // on reset, set to 0
else
q <= d; // otherwise pass d to g

endmodule

no muﬂ':f
Ly e le

33

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Verilog: Simulated Clock

+» For simulation, you need to generate a clock signal:

= For entirety of simulation/program, so use always block

Explicit | initial Toggle: | initial
Edges: clk = O; clk = @;
always begin always
#50 clk <= 1; #50 clk <= ~clk;
#50 clk <= 0; '
end Kﬁi_mm{_mmé/
+ Define clock period: parametek period = 100;
, initial
= Define parameter clk = O
like *lefme micvs subsdddmn in & always
#(period/2) clk <= ~clk;

34

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

Verilog Testbench with Clock

logic CLK,

module D_FF_testbench;

reset, d; é—-mdeka inputs

logic q; — DU ox Fﬁ#
rf,a.parameter PERIOD = 100;
%@ﬂt{ D_FF dut (.q, .d, .reset, .CLK); // Instantiate the D_FF
& A9
La, initial CLK <= 0; // Set up clock
always #(PERIOD/2) CLK<= ~CLK;

—_—

O
£ =] —> @(posedge
‘¢=1200 — @(posedge
€=10] — @(posedge
€240 — @(posedge
-850 —> @(posedge

$stop();

end

endmodule

initial begin

Fhese o Just efter clock riggers
,f’ﬂﬁ“m_ﬂfxa_ﬂﬂzﬁxﬁet up signals
O; reset <= 1;
CLK); reset <= @;
CLK); d <= 1;
CLK); d <= 0;
CLK); #(PERIOD/4) d <= 1;
CLK);

Ey cholce

// end the simulation

CSE369, Winter 2025

35

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Timing Controls

+» Delay: #<time>
= Delays by a specific amount of simulation time

" Can do calculations in <time>
= Examples: #(PERIOD/4), #50

» Edge-sensitive: @(<pos/negedge> signal)
= Delays next statement until specified transition on signal
= Example: @(posedge CLK)

» Level-sensitive Event: wait(<expression>)
= Delays next statement until <expression> evaluates to TRUE
= Example: wait(enable == 1)

CSE369, Winter 2025

36

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

ModelSim Waveforms

@posedse dk) PERTOD/H
I I _73I e

/D _FF testbench/clk
/D _FF testbench/reset

/D_FF testbench/d
/D_FF_testbench/q

initial begin
d <= 0; reset <= 1;
@(posedge CLK); reset <= 0;
@(posedge CLK); d <= 1;
@(posedge CLK); d <= O;k_\‘hﬂrpemjuﬂ a_H_ﬁ'_f posedye
@(posedge CLK); #(PEB@OD/4) d <= 1;
@(posedge CLK%E l—umﬂwﬂﬁ pﬁﬁ@c
$St0p(); ho 54xjfchp,‘+ Oy § e-{m_Jf‘\f aﬁ Fuﬁe&j(‘.’_
end

37

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Summary (1/2)

+ State elements controlled by clock

= Store information

= Control the flow of information between other state elements and combinational
logic

+ Registers implemented from flip-flops
" Triggered by CLK, pass input to output, can reset

+ Critical path constrains clock rate
" Timing constants: setup time, hold time, clk-to-q delay, propagation delays

38

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Summary (2/2)

+» Generating a clock
= Manually create using always block

" Need to decide on period

<

+ Blocking vs. Non-blocking
= Blocking: Statements executed “in series”
= Non-blocking: Statements executed “in parallel”

= Always use non-blocking for clocked elements

+» Synchronous vs. Asynchronous
= Whether signals are controlled by clock or not

39

	Slide 1: Intro to Digital Design Sequential Logic
	Slide 2: Relevant Course Information
	Slide 3: Synchronous Digital Systems (SDS)
	Slide 4: Uses for Sequential Logic
	Slide 5: Control Flow of Information?
	Slide 6: Accumulator Example
	Slide 7: Accumulator: First Try
	Slide 8: State Element: Flip-Flop
	Slide 9: State Element: Register
	Slide 10: Accumulator: Second Try
	Slide 11: Flip-Flop Timing Terminology (1/2)
	Slide 12: Flip-Flop Timing Terminology (2/2)
	Slide 13: Flip-Flop Timing Behavior
	Slide 14: Accumulator: Proper Timing
	Slide 15: Review Question
	Slide 16: Model for Synchronous Digital Systems
	Slide 17: When Can the Input Change?
	Slide 18: Minimum Delay
	Slide 19: Maximum Clock Frequency
	Slide 20: The Critical Path
	Slide 21: Practice Question
	Slide 22
	Slide 23: Where Do Timing Terms Come From?
	Slide 24: Safe Sequential Circuits
	Slide 25: Autopilot Revisited
	Slide 26: Waveform Diagrams Revisited
	Slide 27: Example: SDS Waveform Diagram
	Slide 28: Verilog: Basic D Flip-Flop, Register
	Slide 29: Procedural Blocks
	Slide 30: Blocking vs. Nonblocking
	Slide 31: SystemVerilog Coding Guidelines
	Slide 32: Verilog: Reset Functionality
	Slide 33: Verilog: Reset Functionality
	Slide 34: Verilog: Simulated Clock
	Slide 35: Verilog Testbench with Clock
	Slide 36: Timing Controls
	Slide 37: ModelSim Waveforms
	Slide 38: Summary (1/2)
	Slide 39: Summary (2/2)

