Intro to Digital Design

Instructor: Chris Thachuk

Teaching Assistants:
Jiuyang Lyu Nandini Talukdar

Stephanie Osorio-Tristan Wen Li

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Relevant Course Information

+ Lab 3 Demos due during your assigned demo slots

= Don’t forget to submit your lab materials before Wednesday at 2:30 pm, regardless
of your demo time

+» Lab 4 — Extension of Lab 3 using 7-seg displays

+» Quiz 1is next week in lecture
= Last 20 minutes, worth 10% of your course grade
® On Lectures 1-3: CL, K-maps, Waveforms, and Verilog
= Past Quiz 1 (+ solutions) on website: Course Info — Quizzes

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Synchronous Digital Systems (SDS)

<~ Combinational Logic (CL)

Xy —» —> 7 = Network of logic gates without feedback
X, —» Logi —> 7 . .

:2 Nef\f,';rk :2 " Qutputs are functions only of inputs

Xn —> _>Zm

+» Sequential Logic (SL)

X, —> 7. " The presence of feedback introduces the notion of
X, —» Llogic [—>Z “state”
Network :
) ’ m : : “ ” . .
|_Xn N .7 Circuits that can “remember” or store information

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Uses for Sequential Logic

+ Place to store values for some amount of time:
= Registers

" Memory

+ Help control flow of information between combinational logic blocks

" Hold up the movement of information to allow for orderly passage through CL

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Control Flow of Information?

% Circuits can temporarily go to incorrect states!

Copilot Autopilot Request

A
Pilot in Charge? —{ I

Pilot Autopilot Request

B

Autopilot Engaged

CAR|[1

pclt o

PAR [1

AE 1

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Accumulator Example

+ An example of why we would need to control the flow of information.

X /—> Accumulator /—> S

+~ Want: S = 0;
(i = 0; 7 < nj i++)
+

< Assume:

= Each X value is applied in succession, one per cycle
"= The sum since cycle Ois presenton S

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Accumulator: First Try

«» Does this work?

" No X ,f\

>+ He—S

r"t/

=

1) How to control the next iteration of the ‘for’ loop?
2) How do we accomplish ‘S = 0’7

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

. CLN
State Element: Flip-Flop
+ Positive edge-triggered D-type flip flop jFF Y
" On the rising edge of the clock (§), input d is sampled and transferred to the

output g

= At all other times, the input d is ignored and the previously sampled value is
retained

ST B I R N R W B

.--{:::7.---

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

State Element: Register

i’“ Adn-y Q. Ao
{ae‘ o O ? P <
Reset 4483 e — = FF FF 4 - - - |FF
B N
{n %nol qn-2 9o

+» m instances of flip-flops together
" One for every bit in input/output bus width

% Output Q resets to zero when Reset signal is high during clock trigger

= Some extra circuitry required for this

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Accumulator: Second Try

.8 7 Register holds up the
4

‘[/ transfer of data to adder
1

veedl Yﬂ&\é‘f'&(LOAD/ cLK

e LU0

Delay through Register and Adder —>| |<— i [i i
Rough S E—IXO ﬁ: E‘o-f?(ui YA KitXe AN
timing i i i |
diagram A J %o 1 D { 3 I

Time >

10

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Flip-Flop Timing Terminology (1/2)

+» Camera Analogy: non-blurry digital photo
" Don’t move while camera shutter is opening
" Don’t move while camera shutter is closing
" Check for blurriness once image appears on the display

11

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

Flip-Flop Timing Terminology (2/2)

+» Now applied to sequential logic elements:

= Setup Time: how long the input must be stable before the CLK trigger for proper
input read

" Hold Time: how long the input must be stable after the CLK trigger for proper
input read

" “CLK-to-Q” Delay: how long it takes the output to change, measured from the CLK
trigger

12

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Flip-Flop Timing Behavior

CLIN

A —IFF 9

| |
CAK » Tnput date mug+ be <table
| \v\‘Y\\S \DQX\
.<———————— “setup' time_

' hol A" time

i__ i

e

l

<

— Wik-to-4" delay
' J

13

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Accumulator: Proper Timing

Se-t oy
reset signal shown i «\l’
» X; and S;_; arrive at adder at different times + /
= S. becomes “wrong” temporarily but corrects before S 7
register captures its value et — R eg %—-CLK

» Avoid input instability around rising edge of CLK

14

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

CSE369, Winter 2025

Review Question

+ Which of the following statements is TRUE?

(A)

(B) A flip-flop switches between 0 and 1 on each trigger.

(C) In a SDS, we only need to know setup time, hold time, and clk-to-g
delay constants to ensure correct behavior.

(D) None of the above.

15

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Model for Synchronous Digital Systems

clock _[1] Ijnput

input

+» Combinational logic blocks separated by registers
" Clock signal connects only to sequential logic elements
= Feedback is optional depending on application

+» How do we ensure proper behavior?

" How fast can we run our clock?

16

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

When Can the Input Change?

+ When a register input changes shouldn’t violate hold time (t;,,;4) or
setup time (tgetqp) cOnstraints within a clock period (t,eripq)

= Let tippye,; be the time it takes for the input of a register to change for
the i-th time in a single clock cycle, measured from the CLK trigger:

" Then we need ty10 < tinpur,i = tperioa — Lserup foralli
= Two separate constraints!

CSE369, Winter 2025

17

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Minimum Delay

+ |f shortest path to register input is too short, might violate t;,,;4
constraint
" |nput could change before state is “locked in”
= Particularly problematic with asynchronous signals

Inputs ﬂguts
Combinational
ombifationa Min Delay = min(CLK-to-Q Delay
_AL‘ + :
¢Next State Min CL Delay)
‘> Register Min Delay = Hold Time
| Gurrent Statel,

18

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Maximum Clock Frequency

+» What is the max frequency of this circuit?

= Limited by how much time needed to get correct Next State to Register
(tsetup CONstraint)

Inputs Outguts
Combinational
Lobi Max Delay= max(CLK-to-Q Delay

I — + ’
. Next St;eL‘ + Max CL Delay)

Y

‘> Register Min Period = Max Delay + Setup Time

Current Statgl Max Freq = 1/Min Period

—>

19

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

The Critical Path

+» The critical path is the longest delay between any two registers in a
circuit

+» The clock period must be longer than this critical path, or the signal will
not propagate properly to that next register

Critical Path =
3 CLK-to-Q Delay
. J7 B + CL Delay 1
v, J P2 ﬂl ; + CL Delay 2
N e | 4 |® + CL Delay 3
oa 1 + Adder Delay

+ Setup Time

20

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Practice Question

+» We want to run on 1 GHz processor. t,,,= 100 ps, t,,,; = 200 ps,
tsetup = thod = 20 ps. What is the maximum t ;. , we can use?

(A) (B) 750 ps (C) (D) 700 ps

21

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Technology
Break

22

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Where Do Timing Terms Come From?

Edge-triggered
D flip-flop:

Clocko—

Q|

Datac

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=40852354

23

https://commons.wikimedia.org/w/index.php?curid=40852354

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Safe Sequential Circuits

+» Clocked elements on feedback, perhaps outputs
" Clock signal synchronizes operation

" Clocked elements hide glitches/hazards

—>

X1 L
X2— Logic |7

Network
o

—
Clock L‘J

vy
Ny

Clock |

Data:)(Compute #Valid >(Compute *Valid X Compute 4(
I I | I I I

24

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Autopilot Revisited

+ Flip-flops can “filter out” unintended behavior:

CLK|"L L
Q™ CAR
Copilot Autopilot Request ggn)o D— [
@Q = Autopilot Engaged

Pilot in Charge? ggo D_
b —d PAR

Pilot Autopilot Request sy

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Waveform Diagrams Revisited

+ Easiest to start with CLK on top
= Solve signal by signal, from inputs to outputs

= Can only draw the waveform for a signal if all of its input waveforms are drawn

+ When does a signal update?
= A state element updates based on CLK triggers
= A combinational element updates ANY time ANY of its inputs changes

26

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Example: SDS Waveform Diagram

+ Assume: tCZQ =3 tiCkS, tXOR =2 tiCkS, tNOT =1 thk, tS = th =0

= Note: clocking the gate is a terrible idea

CLK

27

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Verilog: Basic D Flip-Flop, Register

module ba
output
input

always_

q <=
endmodule

sic_D_FF (g, d, clk);
logic q; // g is state-holding
logic d, clk;

ff @(posedge clk)
d; // use <= for clocked elements

module ba
output
input
input

always_

q <=
endmodule

sic_reg (q, d, clk);
logic [7:0] q;

logic [7:0] d;

logic clk;

ff @(posedge clk)
d;

CSE369, Winter 2025

28

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Procedural Blocks

+ always: loop to execute over and over again
= Block gets triggered by a sensitivity list

= Any object that is assigned a value in an always statement must be declared as a
variable (Logic or reg).

= Example:
- always @ (posedge clk)

+» always_Tf: special SystemVerilog for SL
= Only for use with sequential logic — signal intent that you want flip-flops

= Example:
- always_ff @ (posedge clk)

29

WA/ UNIVERSITY of WASHINGTON

Blocking vs. Nonblocking

L4: Sequential Logic

CSE369, Winter 2025

+ Blocking statement (=): statement effects evaluated sequentially
= Resembles programming languages

<+ Nonblocking statement (<=): statement effects evaluated “in parallel”

" Resembles hardware

«» Example: always_ff @ (posedge clk)
begin
b = a;
cC = b;
end

B
0 0
DQ D Q]

CLK|J™

A

always_ff @ (posedge clk)
begin

b <= a;

c <= b;
end

CLK|J™

30

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

SystemVerilog Coding Guidelines

1) When modeling sequential logic, use nonblocking assignments

2) When modeling combinational logic with an always_comb block, use
blocking assignments

3) When modeling both sequential and combinational logic within the same
always_TT block, use nonblocking assignments

4) Do not mix blocking and nonblocking assignments in the same always_x*
block

5) Do not make assignments to the same variable from more than one
always_* block

31

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Verilog: Reset Functionality

. illlii :
D Deno

Reset

% Option 1: synchronous reset

module D_FF1 (q, d, reset, clk);
output logic q; // g is state-holding
input Tlogic d, reset, clk;

always_ff @(posedge clk)
if (reset)

q <= 0; // on reset, set to 0
else
q <= d; // otherwise pass d to g

endmodule

32

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Verilog: Reset Functionality

. illlii :
D Deno

Reset

+» Option 2: asynchronous reset

module D_FF1 (q, d, reset, clk);
output logic q; // g is state-holding
input Tlogic d, reset, clk;

always_ff @(posedge clk or posedge reset)
if (reset)

q <= 0; // on reset, set to 0
else
q <= d; // otherwise pass d to g

endmodule

33

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Verilog: Simulated Clock

+» For simulation, you need to generate a clock signal:
= For entirety of simulation/program, so use always block

Explicit | initial Toggle: | initial
Edges: clk = O; clk = @;
always begin always
#50 clk <= 1; #50 clk <= ~clk;
#50 clk <= 0;
end
+ Define clock period: parameter period = 100;
initial
= Define parameter clk = 0;
always
#(period/2) clk <= ~clk;

34

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Verilog Testbench with Clock

module D_FF_testbench;
logic CLK, reset, d;
logic q;
parameter PERIOD = 100;
D_FF dut (.q, .d, .reset, .CLK); // Instantiate the D_

initial CLK <= 0; // Set up clock
always #(PERIOD/2) CLK<= ~CLK;

initial begin // Set up signals
d <= 0; reset <= 1;
@(posedge CLK); reset <= 0;

@(posedge CLK); d <= 1;
@(posedge CLK); d <= 0;
@(posedge CLK); #(PERIOD/4) d <= 1;
@(posedge CLK);
Sstop(); // end the simulation
end
endmodule

FF

CSE369, Winter 2025

35

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Timing Controls

+» Delay: #<time>
= Delays by a specific amount of simulation time

" Can do calculations in <time>
= Examples: #(PERIOD/4), #50

» Edge-sensitive: @(<pos/negedge> signal)
= Delays next statement until specified transition on signal
= Example: @(posedge CLK)

» Level-sensitive Event: wait(<expression>)
= Delays next statement until <expression> evaluates to TRUE
= Example: wait(enable == 1)

CSE369, Winter 2025

36

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

CSE369, Winter 2025

ModelSim Waveforms

/D _FF testbench/clk
/D _FF testbench/reset

/D_FF testbench/d
/D_FF_testbench/q

initial begin

@(posedge
@(posedge
@(posedge
@(posedge
@(posedge

$stop();
end

CLK);
CLK);
CLK);
CLK);
CLK);

d <= 0; reset <= 1;
reset <= 0;

d <= 1;

d <= 0;

(PERIOD/4) d <= 1;

37

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Summary (1/2)

+ State elements controlled by clock

= Store information

= Control the flow of information between other state elements and combinational
logic

+ Registers implemented from flip-flops
" Triggered by CLK, pass input to output, can reset

+ Critical path constrains clock rate
" Timing constants: setup time, hold time, clk-to-q delay, propagation delays

38

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2025

Summary (2/2)

+» Generating a clock
= Manually create using always block

" Need to decide on period

<

+ Blocking vs. Non-blocking
= Blocking: Statements executed “in series”
= Non-blocking: Statements executed “in parallel”

= Always use non-blocking for clocked elements

+» Synchronous vs. Asynchronous
= Whether signals are controlled by clock or not

39

	Slide 1: Intro to Digital Design Sequential Logic
	Slide 2: Relevant Course Information
	Slide 3: Synchronous Digital Systems (SDS)
	Slide 4: Uses for Sequential Logic
	Slide 5: Control Flow of Information?
	Slide 6: Accumulator Example
	Slide 7: Accumulator: First Try
	Slide 8: State Element: Flip-Flop
	Slide 9: State Element: Register
	Slide 10: Accumulator: Second Try
	Slide 11: Flip-Flop Timing Terminology (1/2)
	Slide 12: Flip-Flop Timing Terminology (2/2)
	Slide 13: Flip-Flop Timing Behavior
	Slide 14: Accumulator: Proper Timing
	Slide 15: Review Question
	Slide 16: Model for Synchronous Digital Systems
	Slide 17: When Can the Input Change?
	Slide 18: Minimum Delay
	Slide 19: Maximum Clock Frequency
	Slide 20: The Critical Path
	Slide 21: Practice Question
	Slide 22
	Slide 23: Where Do Timing Terms Come From?
	Slide 24: Safe Sequential Circuits
	Slide 25: Autopilot Revisited
	Slide 26: Waveform Diagrams Revisited
	Slide 27: Example: SDS Waveform Diagram
	Slide 28: Verilog: Basic D Flip-Flop, Register
	Slide 29: Procedural Blocks
	Slide 30: Blocking vs. Nonblocking
	Slide 31: SystemVerilog Coding Guidelines
	Slide 32: Verilog: Reset Functionality
	Slide 33: Verilog: Reset Functionality
	Slide 34: Verilog: Simulated Clock
	Slide 35: Verilog Testbench with Clock
	Slide 36: Timing Controls
	Slide 37: ModelSim Waveforms
	Slide 38: Summary (1/2)
	Slide 39: Summary (2/2)

