Intro to Digital Design

Instructor: Chris Thachuk

Teaching Assistants:
Jiuyang Lyu Nandini Talukdar

Stephanie Osorio-Tristan Wen Li

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Relevant Course Information

+ Lab demo slots will be assigned on Canvas (tonight)

+» Lab 1 & 2 — Basic Logic and Verilog (due 1/22 @ 2:30pm)

= Digit(s) recognizer using switches and LED
= For full credit, find minimal logic
" Check the lab report requirements closely

+ If you haven’t done so yet, pick up a white lab kit + Okiocam ASAP from
CSE 003 when TAs are present (labs + office hours)

+ Section material available on Fridays @ 3pm

= Materials and (often) recording are available

WA/ UNIVERSITY of WASHINGTON

L2

SystemVerilog Basics

CSE369, Winter 2025

Practice Question:

+ Write out the Boolean Algebra expression for Q for the following circuit.
No simplification necessary.

A

B ————a—

|/

) o

D

B

Dy

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Practice Question:

+ Implement the Boolean expression B(A + C) with the fewest number of
a single universal gate. What does your solution look like?

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Lecture Outline

Thinking About Hardware

/
000

+ Verilog Basics
» Waveform Diagrams

» Debugging in Verilog

WA/ UNIVERSITY of WASHINGTON L2 SystemVerilog Basics

Verilog

+» Programming language for describing hardware

= Simulate behavior before (wasting time) implementing
" Find bugs early

" Enable tools to automatically create implementation

+» Syntax is similar to C/C++/Java, but behavior is very different
= VHDL (the other major HDL) is more similar to ADA

+» Modern version is SystemVerilog

= Superset of previous; cleaner and more efficient

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L2 SystemVerilog Basics

CSE369, Winter 2025

Verilog: Hardware Descriptive Language

+ Although it looks like code: + Keep the hardware in mind:

module myModule (F, A, B, C);
output logic F; A
input logic A, B, C;
logic AN, AB, AC;

I

Do_l‘?o—@

nand gatel(AB,AN, B);

nand gate2(AC, A, C);

nand gate3(F,AB,AC);

not notl(AN, A);
endmodule

30303,

o

myModule

gy

WA/ UNIVERSITY of WASHINGTON L2 SystemVerilog Basics

Verilog Primitives

+» Nets (wire): transmit value of connected source
" Problematic if connected to two different voltage sources

= Can connect to many places (always possible to “split” wire)

+~ Variables (reg): variable voltage sources
= Can “drive” by assigning arbitrary values at any given time
= SystemVerilog: variable Logic can be used as a net, too

+ Logic Values
= 0 =zero, low, FALSE
= 1 =o0ne, high, TRUE
= X = unknown, uninitialized, contention (conflict)

= Z = floating (disconnected), high impedance

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Verilog Primitives

«» @Gates: Gate Verilog Syntax

NOT a ~a

a AND b a &b
aORD a | b
a NAND b ~(a & b)
a NOR b ~(a | b)
a XOR b a M b
a XNOR b ~(a * b)

+» Modules: “classes” in Verilog that define blocks
= |nput: Signals passed from outside to inside of block
= Qutput: Signals passed from inside to outside of block

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Verilog Execution

+ Physical wires transmit voltages (electrons) near-instantaneously

= Wires by themselves have no notion of sequential execution

+» Gates and modules are constantly performing computations
" Can be hard to keep track of!

+ In pure hardware, there is no notion of initialization

= A wire that is not driven by a voltage will naturally pick up a voltage from the
environment

10

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Lecture Outline

Thinking About Hardware

/
000

+ Verilog Basics
» Waveform Diagrams

» Debugging in Verilog

11

WA/ UNIVERSITY of WASHINGTON . SystemVerilog Basics CSE369, Winter 2025

Using an FPGA

- 00101010001010010
10010010010011000
10101000101011000
10101001010010101
no v FPGA 00010110001001010
v logic Vs) 10101001111001001
o s 01000010101001010
G R e, o CAD 10010010000101010

not G3 (v, VB) 10100101010010100

endmodule

01010110101001010
1 TOOIS 01010010100101001

Bitstream

Verilog

Simulation

12

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Structural Verilog

Block Diagram:

A
B - A
B=——>
c .| AOT —+
D D—>

// SystemVerilog code for AND-OR-INVERT circutit
module AOI (F, A, B, C, D);

output logic F;

input logic A, B, C, D;

assign F = ~((A & B) | (C & D));
endmodule

// end of SystemVerilog code

13

WA/ UNIVERSITY of WASHINGTON L2 SystemVerilog Basics

CSE369, Winter 2025

Verilog Wires

AB

cD

o O m P

// SystemVerilog code for AND-OR-INVERT circutit

module AOI (F, A, B, C, D);
output logic F;
input logic A, B, C, D;
logic AB, CD, O; // now necessary
assign AB = A & B;
assign CD = C & D;
assign 0 = AB | CD;
assign F = ~0;
endmodule

14

WA/ UNIVERSITY of WASHINGTON

Verilog Gate Level

o O m P

L2: SystemVerilog Basics

// SystemVerilog code for AND-OR-INVERT

module AOI (F, A, B, C, D);
output logic F;
input logic A, B, C, D;
logic AB, CD, O;

and al(AB, A,
and a2(CDh, C,
or o01(0, AB,
not nl1(F, 0);
endmodule

— Was:

// now necessary

assign
assign
assign
assign

Ch =
= A

circuilt

— @ go
O O @
O we we

~y

O wmn >

CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON L2 SystemVerilog Basics

Verilog Hierarchy

// SystemVerilog code for AND-OR-INVERT circuit
module AOI (F, A, B, C, D);

output logic F;

input logic A, B, C, D;

assign F = ~((A & B)|(C & D));
endmodule

// 2:1 multiplexer built on top of AOI module
module MUX2 (V, SEL, I, J);

output logic V;

input logic SEL, I, J;

logic SELN, VN;

not G1 (SELN, SEL);

AOI G2 (.F(VN), .A(I), .B(SEL), .C(SELN),
.D(J3));

not G3 (V, VN);

endmodule

CSE369, Winter 2025

2-input MUX
— |
I

SEL
IE seLN| AO| EDO—V

16

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Technology
Break

17

WA/ UNIVERSITY of WASHINGTON

Lecture Outline

Thinking About Hardware

/
000

» Verilog Basics
+ Waveform Diagrams
+~ Debugging in Verilog

L2: SystemVerilog Basics

CSE369, Winter 2025

18

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Signals and Waveforms

+ Signals transmitted over wires continuously

" Transmission is effectively instantaneous
(a wire can only contain one value at any given time)

" |n digital system, a wire holds either a O (low voltage) or 1 (high voltage)

\ow (o) s bl

Stack multiple signals in
same waveform diagram
vertically (syncing times)

19

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Signal Grouping

)<|3 XZ{X‘XO

Ny | % f"’] o

l .
A group of wires when %2 l I l C{ Om
interpreted as a bit field ! | , |
is called a bus X o ’—J"——\ |
% o1 | oo

“undefined” (unknown) signal
20

WA/ UNIVERSITY of WASHINGTON L2 SystemVerilog Basics

Circuit Timing Behavior

+» Simple Model: Gates “react” after fixed delay

= Example: Assume delay of all gatesis 1 ns (= 3 ticks)

A D
B = F
C
Alo 1
B |1
c lo
D
E

CSE369, Winter 2025

21

WA/ UNIVERSITY of WASHINGTON L2 SystemVerilog Basics

Circuit Timing: Hazards/Glitches

% Circuits can temporarily go to incorrect states!

= Assume 1 ns delav (3 ticks) for all gates

Copilot Autopilot Request A B
Pilot in Charge?—i Autopilot Engaged
Pilot Autopilot Request C
CAR |1
PAR |1
L
B
g
AE

CSE369, Winter 2025

22

WA/ UNIVERSITY of WASHINGTON L2 SystemVerilog Basics

Verilog Buses

AB

CD

o O o F

// SystemVerilog code for AND-OR-INVERT circutit

module AOI (F, A, B, C, D);
output logic F;
input logic A, B, C, D;
logic [2:0] w; // necessary

J

assign w[O] = A & B; Just for illustration —
assign w[l] = C & D; this is bad coding style
assign w[2] = w[0] | w[1l];

assign F = ~w[2];
endmodule

CSE369, Winter 2025

23

WA/ UNIVERSITY of WASHINGTON L2 SystemVerilog Basics

Verilog Signal Manipulation

» Bus definition: [n-1:07 is an n-bit bus

" Good practice to follow bit numbering notation

= Access individual bit/wire using “array” syntax (e.g., bus[1])
= Can access sub-bus using similar notation (e.g., bus[4:2])
Multi-bit constants: n'b#..#

= nis width, b is radix specifier (b for binary), #s are digits of number
" eg.,4'd12, 4'b1100, 4'hC

D)

*

D

*

Concatenation: {sig, .., sig}

" Ordering matters; result will have combined widths of all signals

D)

*

Replication operator: {n{m}}
" repeats value m, n times

CSE369, Winter 2025

24

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Practice Question

logic [4:0] apple;

logic [3:0] pear;

logic [9:0] orange;

assign apple = 5'd20;

assign pear = {1'b0, apple[2:1], apple[4]};

» What's the value of pear?

» |If we want orange to be the sign-extended version of apple, what is the appropriate
Verilog statement?

assign orange =

25

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Lecture Outline

Thinking About Hardware

/
000

+ Verilog Basics
» Waveform Diagrams

» Debugging in Verilog

26

WA/ UNIVERSITY of WASHINGTON L2 SystemVerilog Basics

Test Benches

+~ Needed for simulation only!

= Software constraint to mimic hardware

+» ModelSim runs entirely on your computer

" Tries to simulate your FPGA environment without actually using hardware —no
physical signals available

= Must create fake inputs for FPGA’s physical connections
- e.g., LEDR, HEX, KEY, SW, CLOCK_50

" Unnecessary when code is loaded onto FPGA

+ Need to define both input signal combinations as well as their timing

CSE369, Winter 2025

27

WA/ UNIVERSITY of WASHINGTON

Verilog Test Benches Test *

L2: SystemVerilog Basics

Vectors [MUX 2

CSE369, Winter 2025

Fesults
Anabysis

module MUX2_tb ();
logic SEL, I, J;
logic V;

// simulated inputs
// net for reading output

// instance of module we want to test ('"device under test")
MUX2 dut (.V(V), .SEL(SEL), .I(I), .J(J));

initial // build stimulus (test vectors)

begin // start of "block" of code
{SEL, I, 3} = 3'b1l00; #10; // t=0: S=1, I=0, J=0 -> V=0
I = 1; #10; // t=10: S=1, I=1, J=0 -> V=1
SEL = 03 #10; // t=20: S=0, I=1, J=0 -> V=0
J = 1 #10; // t=30: S=0, I=1, J=1 -> V=1
end // end of "block" of code
endmodule // MUX2_tb

28

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Better Verilog Test Bench

module MUX2_tb ();
logic SEL, I, J; // simulated inputs
logic V; // net for reading output

// instance of module we want to test ('"device under
test")

MUX2 dut (.V(V), .SEL(SEL), .I(I), .J(3J));

int 1;
initial // build stimulus (test vectors)
begin // start of "block" of code
for(i = 0; 1 < 8; 1 =1 + 1) begin
{SEL, I, J} = 1; #10;
end
end // end of "block" of code

endmodule // MUX2_tb

29

WA/ UNIVERSITY of WASHINGTON L2: SystemVerilog Basics CSE369, Winter 2025

Debugging Circuits

+» Complex circuits require careful debugging
" Test as you go; don’t wait until the end (system test)

= Fvery module should have a test bench (unit test)

1) Test all behaviors

= All combinations of inputs for small circuits, subcircuits
2) ldentify any incorrect behaviors

3) Examine inputs & outputs to find earliest place where value is wrong
= Typically trace backwards from bad outputs, forwards from inputs
" Look at values at intermediate points in circuit

31

L2: SystemVerilog Basics CSE369, Winter 2025

WA/ UNIVERSITY of WASHINGTON

Hardware Debugging

+» Simulation (ModelSim) is used to debug logic design and should be done

thoroughly before touching FPGA
= Unfortunately, ModelSim is not a perfect simulator

+ If interfacing with other circuitry (e.g., breadboard), will also need to

debug circuitry layout there
= Similar process, but with power sources (inputs) and voltmeters (probe the wires)

= Often just a poor electrical connection somewhere

+» Sometimes things simply fail
= All electrical components fail eventually, whether you caused it to or not

32

WA/ UNIVERSITY of WASHINGTON

L2: SystemVerilog Basics

CSE369, Winter 2025

Summary

+ SystemVerilog is a hardware description language (HDL) used to program
your FPGA

" Programmatic syntax used to describe the connections between gates and
registers

+» Waveform diagrams used to track intermediate signals as information
propagates through CL

+» Hardware debugging is a critical skill

= Similar to debugging software, but using different tools

33

	Slide 1: Intro to Digital Design SystemVerilog Basics
	Slide 2: Relevant Course Information
	Slide 3: Practice Question:
	Slide 4: Practice Question:
	Slide 5: Lecture Outline
	Slide 6: Verilog
	Slide 7: Verilog: Hardware Descriptive Language
	Slide 8: Verilog Primitives
	Slide 9: Verilog Primitives
	Slide 10: Verilog Execution
	Slide 11: Lecture Outline
	Slide 12: Using an FPGA
	Slide 13: Structural Verilog
	Slide 14: Verilog Wires
	Slide 15: Verilog Gate Level
	Slide 16: Verilog Hierarchy
	Slide 17
	Slide 18: Lecture Outline
	Slide 19: Signals and Waveforms
	Slide 20: Signal Grouping
	Slide 21: Circuit Timing Behavior
	Slide 22: Circuit Timing: Hazards/Glitches
	Slide 23: Verilog Buses
	Slide 24: Verilog Signal Manipulation
	Slide 25: Practice Question
	Slide 26: Lecture Outline
	Slide 27: Test Benches
	Slide 28: Verilog Test Benches
	Slide 29: Better Verilog Test Bench
	Slide 31: Debugging Circuits
	Slide 32: Hardware Debugging
	Slide 33: Summary

