YA UNIVERSITY of WASHINGTON L5: Finite State Machines

CSE369, Winter 2024

Intro to Digital Design

Instructor: Justin Hsia

Teaching Assistants:

Caitlyn Rawlings Donovan Clay
Emilio Alcantara Joy Jung
Naoto Uemura

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

Relevant Course Information

% Quiz 1 grades should be out on Gradescope tonight

= Both the quiz and solutions will be added to the question
bank on the course website

% Lab 5 — Verilog implementation of FSMs
= Step up in difficulty from Labs 1-4 (worth 100 points)

= Bonus points for minimal logic 110 max pogible
- Simplification through design (Verilog does the rest)

0
P pen

{

K

NN

Review of Timing Terms

NN

%
/ /
" //

o
+ Clock: steady square wave that synchronizes systefh ék

+ Flip-flop: one bit of state that samples every rising edge of
CLK (positive edge-triggered)

+ Register: several bits of state that samples on rising edge of
CLK (positive edge-triggered); often has a RESET

« Setup Time: when input must be stable before CLK trigger

«» Hold Time: when input must be stable after CLK trigger

2 CLK-to-Q Delay: how long it takes output to change from
CLK trigger

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

SDS Timing Question (all times in ns)
'? < ‘én i é_ fper.oo\ {5“}“{’

+ The circuit be ow w has the following timing parameters

— |br\9e§|' ath I-es nr,vd'
u tperlod — 20, tsetup — 2 = Shortest pa‘u\ 1o YE_(,]f\‘)uj—

" txor = tor = O, tyor = 4

" |nput changes 1 ns after clock trigger

A B utput
\ . ent
)Inpu

= What is the max tcyq? ety constoint g
mp\:l' n I&S"' time a Yegis+er |‘hpuc\' ckangej

czez"' Nm’""éxura'\'{oz - é”"’)‘ _65‘*"? 2 4 n (
N et T e - L £ T s

» Iftcoq = 3, what is the max the1q? €1y Constramt
A s + éxw > éhou _é\n(,\x})l L e o register

% fn(\i" CLAV\gCS
é‘%o\é é é NS k

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

Outline

+ Flip-Flop Realities
% Finite State Machines
+» FSMs in Verilog

YA UNIVERSITY of WASHINGTON L5: Finite State Machines

CSE369, Winter 2024

Flip-Flop Realities: Gating the Clock

+ Delay can cause part of circuit
to get out of sync with rest D D Flip-Flop Q
" More timing headaches! A

= Adds to clock skew Clock —:X}—“C
+ Hard to track non-uniform Enable—

triggers

Enable
Clock
C

1 I B
<+ NEVER GATE THE CLOCK!!!

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

Flip-Flop Realities: External Inputs

+» External inputs aren’t synchronized to the clock

" |If not careful, can violate timing constraints

+» What happens if input changes around clock trigger?

D /\l ~ same ‘Hme{
Cb\A\a\/L\j\l vlo\&‘e Se‘tuf OVL‘()‘()\ cons‘rvm'\)f
Clk /

\/—v—/

U\v\kho\«uh duy (' DV~

M Metastebilty

L)

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

Flip-Flop Realities: Metastability

Metastability is the ability of a digital system to
persist for an unbounded time in an unstable
equilibrium or metastable state

= Circuit may be unable to settle into a stable '0' or '1' logic
level within the time required for proper circuit operation

" Unpredictable behavior or random value
" https://en.wikipedia.org/wiki/Metastability in electronics

State elements can help reject transients

" Longer chains = more rejection, but longer signal delay

+() f€$+

of circuf

https://en.wikipedia.org/wiki/Metastability_in_electronics

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

Outline

+ Flip-Flop Realities
+ Finite State Machines
+» FSMs in Verilog

CSE369, Winter 2024

YA UNIVERSITY of WASHINGTON L5: Finite State Machines

Finite State Machines (FSMs)

+ A convenient way to conceptualize computation over
time
® Function can be represented with a state transition diagram

= You’'ve seen these before in CSE311

+~ New for CSE369: Implement FSMs in hardware as
synchronous digital systems \
" Flip-flops/registers hold “state”

: Controller(?tate update, 1/0)
implemented in combinational

logic

/o oT

10

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

State Diagrams

+ An state diagram (in this class) is defined by:
= Asetof states S (circles)
= Aninitial state s, (only arrow not between states)

= A transition function that maps from the current input and
current state to the output and the next state
(arrows between states)

- Note: We cover|[Mealy mafm@ here; Moore machines put outputs
on states, not transitions

+ State transitions are controlled by the clock:

" On each clock cycle the machine checks the inputs and
generates a new state (could be same) and new output

11

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

Example: Buggy 3 Ones FSM

+» FSM to detect 3 consecutive 1’s in the Input

I/ “r
/o 2 \/\ o
OStates: SO, S1, S2
\\ [Initial State: SO
Transitions of form:
input/output

<~ T e L | e SIS
INTUI .¢|¢\|L£Jl|l(b|l\l@|lll\!

k3
ouThuT A

12

YA UNIVERSITY of WASHINGTON L5: Finite State Machines

Hardware Implementation of FSM

CSE369, Winter 2024

+ Register holds a representation of the FSM’s state

= Must assign a unigue bit pattern for each state

= Qutput is present/current state (PS/CS)

" |nputis next state (NS)

+» Combinational Logic implements transition function

(state transitions + output)

Y\QX-‘— s*l'de
NS

T'Q_g

I

Pl (7<)

on C‘bCk +V.‘59er' b\A Mj Leccw\ef PS

13

YA UNIVERSITY of WASHINGTON L5: Finite State Machines

FSM: Combinational Logic

" Inputs:

+ Read off transitions into Truth Table!
Present State (PS) and Input (In)
= Qutputs: Next State (NS) and Output (Out)

PS NS

00 00 0
00 01 0
01 00 0
01 10 0
10 00 0
10 00 1
e 4

b itg

+» Implement logic for EACH output (2 for NS, 1 for Out)

CSE369, Winter 2024

YA UNIVERSITY of WASHINGTON

L5: Finite State Machines

CSE369, Winter 2024

FSM: Logic Simplification

A, NSy

L/
PS | In | NS | Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1
11 0 XX X
11 1 XX X

Sy ps
In 00 01 11 10
o [0 [O] X[©
1 lo(r] XY o
NS,
PS
In o0 01 11 10
0 | 010 [X |6
{DEIRSE
Ot pS
In o0 01 11 10
o | Ofo [W |D
SR CID

15

YA UNIVERSITY of WASHINGTON L5: Finite State Machines

FSM: Implementation

+ NS; = PS, - In
X NSO — PS]_ . PSO - In
» Out = PS4 - In

«» How do we test the FSM?

= “Take” every transition that we care about!

D)

CSE369, Winter 2024

16

L5: Finite State Machines CSE369, Winter 2024

YA UNIVERSITY of WASHINGTON

State Diagram Properties

+» For § states, how many state bits do | use?
s= Log, S
+» For I inputs, what is the maximum number of
transition arrows on the state diagram?
Sx2° ‘% © 7
= Can sometimes combine transition arrows; 5 3o
= Can sometimes omit transitions (don’t cares)

+» For s state bits and I inputs, how big is the truth

table? 21*5

17

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

Vending Machine Example

+» Vending machine description/behavior:

1 . . . - . I '/_" "
" Single coin slot for dimes and nlé\ﬁels = Zinpdls = 4 i‘fg” bns

N Ol
= Releases gumball aftef > 10 cents deposited P s x
= Gives no change Coin N[Vending Gumball
Sensor[— 5~ “IMachine Release
Reset FSM Mechanism

CLK
+ State Diagram:

18

YA UNIVERSITY of WASHINGTON

L5: Finite State Machines

Vendmg Machme State Table

b/ " DN/O

DN/ 1(/

A

’/1
PS| N | D |NS |Open
o0l O0]lO| O
olo| 10| L
ol1]o0]|lL| O
0|1 |1]|X]| X
110102]| O
11010 | L
111 0]lo| L
11 1] X X

NS ps i
D\00 01 11 10
o |oft)o (1)
L [O X[X0
NS = PN+ PEND
Open
< PS,N
D\.00 o1 10
o | OlO]|a] o0
SEHPIRYES
=D + Ps-N

19

CSE369, Winter 2024

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

Vending Machine Implementation

» Open =D+ PS-N
NS=PS-N+PS-N-D

Open_l
“—G%_l AR
DPUSQ 4 i}!ﬁs .G [0_4@

0
CLK d‘*ju_ L0, 0

20

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

Outline

+ Flip-Flop Realities
% Finite State Machines
%~ FSMs in Verilog

21

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

FSMs in Verilog: Declarations

+» Let’s examine the components of the Verilog FSM
example module on the next few slides

in pu:\'
\((O\u“"r&d’
module simpleFSM (clk, reset, w, out);

input 1logic clk, reset,rw;

output logic out; I‘M\oor‘fan‘" “+> “\'n'rha\izeh hevd ware
// State Encodin and variables

enum logic [1:0] {SO = 2'b00, S1 = 2'b01, S11 = 2'bl0}
ps, ns; // ps = Present State;)ns = Next/State t—&yhﬂckﬁﬁma

ot b'wry mcodag
defines new bl 6. is optiong |

theie \Iavfé.b'(_g

22

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

FSMs in Verilog: Combinational Logic

0/Q L/ 6
RS
. <0 S1
// Next State Logic 00 <;;:>
always_comb F;E;ﬁ;//
case (ps)
s0: if (w) ns = S1; o/0 1/1
else ns = S0;
S1: 4if (w) ns = S11; 54%
else ns = S0; —
S11: if (w) ns = S11; U
else ns = S0; 1/A
endcase

// Output Logic - could have been in "always" block
// or part of Next State Logic.
assign out = (ns == S11); ot L o @Y4mmﬂbﬁ going iwto SAA

/__—/—M (ckedinﬁ V\S;"‘d P5>

23

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

FSMs in Verilog: State

// Sequential Logic (DFFs)
always ff ((posedge clk)

if (reset) wphate state
ps <= S0; /A "intal” ctate (v yeget)
else on clock ‘|'vtg«jer

endmodule

24

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

Reminder: Blocking vs. Non-blocking

«» NEVER mix in one always block!
+ Each variable written in only one always block

+ Blocking (=) in CL: +» Non-blocking (<=) in SL:
// Output logic // Sequential Logic
assign out = (ns == S11); always ff ((posedge clk)

if (reset)
// Next State Logic ps <= S0;
always_ comb else
case (ps) ps <= ns;
SO0: 1if (w) ns = S1;
else ns = SO0;
Sl: 1if (w) ns = S11;
else ns = SO0;
S11: 1if (w) ns = S11;
else ns = SO0;

endcase

25

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

One or Two Blocks?

+» We showed the state update in two separate blocks:
" always comb block that calculates the next state (ns)

" always ff blockthat defines the register (ps updates to
last ns on clock trigger)

% Can this be done with a single block?

" If so, which one: always comb or@

Miqv\; we need 'h)

WS€& hon- \’)l OC\Q f\j
S ’\'o:*emew—‘-)'

26

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

One or Two Blocks? yor doice)

v;,_._J

alw

always ff ((posedge clk)

case (ps) if (reset)
SO: 1f (w) ns = S1; ps <= S0;
else ns = S0;
S1: 4if (w) ns = S11; DL
else ns = SO; case (ps)
S11l: if (w) ns = S11; SO0: 1f (w) ps <= S1;
else ns = S0; else ps <= S0;
endcase S1: if (w) ps <= S11;

else ps <= S0;
always ff @ (posedge clk) S11: if (w) ps <= S11;

if (reset)
ps <= SO0;

else ps <= S0;

endcase
else

>

27

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

FSM Testbench (1/2)

module simpleFSM tb();
logic clk, reset, w;
logic out;

simpleFSM dut (.clk, .reset, .w, .out);

// Set up the clock
parameter CLOCK PERIOD=100;

initial begin Simulated
cik <= 0; Aock

forever # (CLOCK PERIOD/2) clk <= ~clk;
end

28

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

FSM Testbench (2/2)

// Set up the inputs to the design (each line is a clock cycle)

initial begin

mxﬁCﬂreset <= 1; w <= 0; @(posedge clk);
>reset <= 0; w <= 0; @ (posedge clk);

(@ (posedge clk);
"o S i J ¢ (posedge cli;
d (posedge clk);

w <= 1; @ (posedge clk);

w <= 0; @ (posedge clk);

w <= 1; @ (posedge clk);

@ (posedge clk);

@ (posedge clk);

@ (posedge clk);

w <= 0; @ (posedge clk);

@ (posedge clk);

Sstop; // pause the simulation
end
endmodule

29

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

Testbench Waveforms
clockc\/des'.OlilQ_]'s)Ln)slél:;Ll<z c\\m 14
R | L L
reset ‘ B
W | J

Iso . [[

i DL:_;_)_J TR

ns

I

eydes 1-4 1/0 1/1
y
0/0 mm

Reset /\/\-"
¢ycle © cycle b c\,des 4,10

0/0

\/

cycle 14

- What is t%e min # of clock cycles to completely test this FSM?
cycles = L veset + F hgnasitions (w A Lrom stde A doken o ce) 30

YA UNIVERSITY of WASHINGTON L5: Finite State Machines CSE369, Winter 2024

Summary

+» Gating the clock and external inputs can cause timing
issues and metastability

+» FSMs visualize state-based computations

" Implementations use registers for the state (PS) and
combinational logic to compute the next state and output(s)

®" Mealy machines have outputs based on state transitions

+» FSMs in Verilog usually have separate blocks for state
updates and CL

" Blocking assignments in CL, non-blocking assignments in SL

= Testbenches need to be carefully designed to test all state

transitions
31

