
CSE369, Winter 2024L4: Sequential Logic

Intro to Digital Design
Sequential Logic

Instructor: Justin Hsia

Teaching Assistants:

Caitlyn Rawlings Donovan Clay

Emilio Alcantara Joy Jung

Naoto Uemura

CSE369, Winter 2024L4: Sequential Logic

Relevant Course Information

❖ Lab 3 Demos due during your assigned demo slots

▪ Don’t forget to submit your lab materials before Wednesday
at 2:30 pm, regardless of your demo time

❖ Lab 4 – 7-seg displays

❖ Quiz 1 is next week in lecture

▪ Last 20 minutes, worth 10% of your course grade

▪ On Lectures 1-3: CL, K-maps, Waveforms, and Verilog

▪ Past Quiz 1 (+ solutions) on website: Course Info → Quizzes

2

CSE369, Winter 2024L4: Sequential Logic

Synchronous Digital Systems (SDS)

❖ Sequential Logic (SL)

The presence of feedback
introduces the notion of “state.”

Circuits can “remember” or store
information.

3

❖ Combinational Logic (CL)

Network of logic gates without
feedback.

Outputs are functions only of
inputs.

-

-
-

X1

X2

Xn

Logic

Network

Z 1

Z 2

Z m

-

-
-

-

-
-

X1

X2

Xn

Logic

Network

Z 1

Z 2

Z m

-

-
-

CSE369, Winter 2024L4: Sequential Logic

Uses for Sequential Logic

❖ Place to store values for some amount of time:

▪ Registers

▪ Memory

❖ Help control flow of information between
combinational logic blocks

▪ Hold up the movement of information to allow for orderly
passage through CL

4

CSE369, Winter 2024L4: Sequential Logic

Control Flow of Information?

❖ Circuits can temporarily go to incorrect states!

5

CSE369, Winter 2024L4: Sequential Logic

❖ Want: S = 0;

for (i=0; i<n; i++)

S = S + Xi;

❖ An example of why we would need to control
the flow of information.

❖ Assume:
▪ Each X value is applied in succession, one per cycle
▪ The sum since cycle 0 is present on S

Accumulator Example

6

AccumulatorXi S

CSE369, Winter 2024L4: Sequential Logic

Does this work?
• No

1) How to control the next iteration of the ‘for’
loop?

2) How do we say: ‘S=0’?

Accumulator: First Try

7

X

CSE369, Winter 2024L4: Sequential Logic

State Element: Flip-Flop

❖ Positive edge-triggered D-type flip flop

▪ “On the rising edge of the clock (),
input d is sampled and transferred to the output q. At other
times, the input d is ignored and the previously sampled
value is retained.”

8

CSE369, Winter 2024L4: Sequential Logic

State Element: Register

❖ 𝑛 instances of flip-flops together

▪ One for every bit in input/output bus width

❖ Output Q resets to zero when RESET signal is high
during clock trigger

▪ Some extra circuitry required for this

9

RESET

CSE369, Winter 2024L4: Sequential Logic

Rough
timing
diagram

Time

Accumulator: Second Try

10

Register holds up the
transfer of data to adder

Delay through Register and Adder

CSE369, Winter 2024L4: Sequential Logic

Flip-Flop Timing Terminology (1/2)

❖ Camera Analogy: non-blurry digital photo

▪ Don’t move while camera shutter is opening

▪ Don’t move while camera shutter is closing

▪ Check for blurriness once image appears on the display

11

CSE369, Winter 2024L4: Sequential Logic

Flip-Flop Timing Terminology (2/2)

❖ Now applied to sequential logic elements:

▪ Setup Time: how long the input must be stable before the
CLK trigger for proper input read

▪ Hold Time: how long the input must be stable after the CLK
trigger for proper input read

▪ “CLK-to-Q” Delay: how long it takes the output to change,
measured from the CLK trigger

12

CSE369, Winter 2024L4: Sequential Logic

Flip-Flop Timing Behavior

13

CSE369, Winter 2024L4: Sequential Logic

Accumulator: Proper Timing

14

• reset signal shown

• Also, in practice Xi might not arrive at
the adder at the same time as Si-1

• Si temporarily is wrong, but register
always captures correct value

• In good circuits, instability never
happens around rising edge of CLK

CSE369, Winter 2024L4: Sequential Logic

Review Question

❖ Which of the following statements is TRUE?

15

The input to a flip-flop must remain stable
throughout the CLK-to-Q delay.

(A)

A flip-flop switches between 0 and 1 on each
trigger.

(B)

In a SDS, we only need to know setup time,
hold time, and clk-to-q delay constants to
ensure correct behavior.

(C)

(D)

CSE369, Winter 2024L4: Sequential Logic

Model for Synchronous Digital Systems

❖ Combinational logic blocks separated by registers

▪ Clock signal connects only to sequential logic elements

▪ Feedback is optional depending on application

❖ How do we ensure proper behavior?

▪ How fast can we run our clock?

16

CSE369, Winter 2024L4: Sequential Logic

When Can the Input Change?

❖ When a register input changes shouldn’t violate hold
time (𝑡ℎ𝑜𝑙𝑑) or setup time (𝑡𝑠𝑒𝑡𝑢𝑝) constraints within a

clock period (𝑡𝑝𝑒𝑟𝑖𝑜𝑑)

❖ Let 𝑡𝑖𝑛𝑝𝑢𝑡,𝑖 be the time it takes for the input of a

register to change for the 𝑖-th time in a single clock
cycle, measured from the CLK trigger:

▪ Then we need 𝑡ℎ𝑜𝑙𝑑 ≤ 𝑡𝑖𝑛𝑝𝑢𝑡,𝑖 ≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑡𝑠𝑒𝑡𝑢𝑝 for all 𝑖

▪ Two separate constraints!

17

CSE369, Winter 2024L4: Sequential Logic

Minimum Delay

❖ If shortest path to register input is too short, might
violate hold time constraint

▪ Input could change before state is “locked in”

▪ Particularly problematic with asynchronous signals

18

Min Delay = min(

Min Delay ≥ Hold Time

CLK-to-Q Delay
+ Min CL Delay,
Min CL Delay)

CSE369, Winter 2024L4: Sequential Logic

Maximum Clock Frequency

❖ What is the max frequency of this circuit?

▪ Limited by how much time needed to get correct Next State
to Register (𝑡𝑠𝑒𝑡𝑢𝑝 constraint)

19

Max Delay= max(

Min Period = Max Delay + Setup Time
Max Freq = 1/Min Period

CLK-to-Q Delay

+ Max CL Delay,
+ Max CL Delay)

CSE369, Winter 2024L4: Sequential Logic

+R
e

g

R
e

g

The Critical Path

❖ The critical path is the longest delay between any two
registers in a circuit

❖ The clock period must be longer than this critical
path, or the signal will not propagate properly to that
next register

20

1

2

3

4

Critical Path =
CLK-to-Q Delay
+ CL Delay 1
+ CL Delay 2
+ CL Delay 3
+ Adder Delay
+ Setup Time

CSE369, Winter 2024L4: Sequential Logic

Practice Question

❖ We want to run on 1 GHz processor. tadd = 100 ps.
tmult = 200 ps. tsetup = thold = 50 ps. What is the
maximum tclk-to-q we can use?

21

550 ps(A) 750 ps(B) 500 ps(C) (D)

CSE369, Winter 2024L4: Sequential Logic

Technology

Break
22

CSE369, Winter 2024L4: Sequential Logic

Where Do Timing Terms Come From?

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=40852354

23

Edge-triggered
D flip-flop:

https://commons.wikimedia.org/w/index.php?curid=40852354

CSE369, Winter 2024L4: Sequential Logic

Safe Sequential Circuits

❖ Clocked elements on feedback, perhaps outputs

▪ Clock signal synchronizes operation

▪ Clocked elements hide glitches/hazards

24

Clock

-

-
-

X1

X2

Xn

Logic

Network

Z 1

Z 2

Z m

-

-
-

Clock

Data Valid ComputeCompute Valid Compute

CSE369, Winter 2024L4: Sequential Logic

Autopilot Revisited

❖ Flip-flops can “filter out” unintended behavior:

25

CSE369, Winter 2024L4: Sequential Logic

Waveform Diagrams Revisited

❖ Easiest to start with CLK on top

▪ Solve signal by signal, from inputs to outputs

▪ Can only draw the waveform for a signal if all of its input
waveforms are drawn

❖ When does a signal update?

▪ A state element updates based on CLK triggers

▪ A combinational element updates ANY time ANY of its inputs
changes

26

CSE369, Winter 2024L4: Sequential Logic

Example: SDS Waveform Diagram

❖ Assume: 𝑡𝐶2𝑄 = 3 ticks, 𝑡𝑋𝑂𝑅 = 2 ticks, 𝑡𝑁𝑂𝑇 = 1 tick; 𝑡𝑠 = 𝑡ℎ = 0

▪ Note: clocking the gate is a terrible idea

27

CSE369, Winter 2024L4: Sequential Logic

Verilog: Basic D Flip-Flop, Register

28

module basic_D_FF (q, d, clk);

output logic q; // q is state-holding

input logic d, clk;

always_ff @(posedge clk)

q <= d; // use <= for clocked elements

endmodule

module basic_reg (q, d, clk);

output logic [7:0] q;

input logic [7:0] d;

input logic clk;

always_ff @(posedge clk)

q <= d;

endmodule

CSE369, Winter 2024L4: Sequential Logic

Procedural Blocks

❖ always: loop to execute over and over again

▪ Block gets triggered by a sensitivity list

▪ Any object that is assigned a value in an always statement
must be declared as a variable (logic or reg).

▪ Example:
• always @ (posedge clk)

❖ always_ff: special SystemVerilog for SL

▪ Only for use with sequential logic – signal intent that you
want flip-flops

▪ Example:
• always_ff @ (posedge clk)

29

CSE369, Winter 2024L4: Sequential Logic

Blocking vs. Nonblocking

❖ Blocking statement (=): statements executed
sequentially

▪ Resembles programming languages

❖ Nonblocking statement (<=): statements executed
“in parallel”

▪ Resembles hardware

❖ Example:

30

always_ff @ (posedge clk)

begin

b = a;

c = b;

end

always_ff @ (posedge clk)

begin

b <= a;

c <= b;

end

CSE369, Winter 2024L4: Sequential Logic

SystemVerilog Coding Guidelines

1) When modeling sequential logic, use nonblocking
assignments

2) When modeling combinational logic with an
always_comb block, use blocking assignments

3) When modeling both sequential and combinational logic
within the same always_ff block, use nonblocking
assignments

4) Do not mix blocking and nonblocking assignments in the
same always_* block

5) Do not make assignments to the same variable from more
than one always_* block

31

CSE369, Winter 2024L4: Sequential Logic

Verilog: Reset Functionality

❖ Option 1: synchronous reset

32

module D_FF1 (q, d, reset, clk);

output logic q; // q is state-holding

input logic d, reset, clk;

always_ff @(posedge clk)

if (reset)

q <= 0; // on reset, set to 0

else

q <= d; // otherwise pass d to q

endmodule

CSE369, Winter 2024L4: Sequential Logic

Verilog: Reset Functionality

❖ Option 2: asynchronous reset

33

module D_FF1 (q, d, reset, clk);

output logic q; // q is state-holding

input logic d, reset, clk;

always_ff @(posedge clk or posedge reset)

if (reset)

q <= 0; // on reset, set to 0

else

q <= d; // otherwise pass d to q

endmodule

CSE369, Winter 2024L4: Sequential Logic

Verilog: Simulated Clock

❖ For simulation, you need to generate a clock signal:
▪ For entirety of simulation/program, so use always block

❖ Define clock period:

▪ Define parameter

34

Explicit
Edges:

initial

clk = 0;

always begin

#50 clk <= 1;

#50 clk <= 0;

end

initial

clk = 0;

always

#50 clk <= ~clk;

Toggle:

parameter period = 100;

initial

clk = 0;

always

#(period/2) clk <= ~clk;

CSE369, Winter 2024L4: Sequential Logic

Verilog Testbench with Clock

35

module D_FF_testbench;

logic CLK, reset, d;

logic q;

parameter PERIOD = 100;

D_FF dut (.q, .d, .reset, .CLK); // Instantiate the D_FF

initial CLK <= 0; // Set up clock

always #(PERIOD/2) CLK<= ~CLK;

initial begin // Set up signals

d <= 0; reset <= 1;

@(posedge CLK); reset <= 0;

@(posedge CLK); d <= 1;

@(posedge CLK); d <= 0;

@(posedge CLK); #(PERIOD/4) d <= 1;

@(posedge CLK);

$stop(); // end the simulation

end

endmodule

CSE369, Winter 2024L4: Sequential Logic

Timing Controls

❖ Delay: #<time>

▪ Delays by a specific amount of simulation time

▪ Can do calculations in <time>

▪ Examples: #(PERIOD/4), #50

❖ Edge-sensitive: @(<pos/negedge> signal)

▪ Delays next statement until specified transition on signal

▪ Example: @(posedge CLK)

❖ Level-sensitive Event: wait(<expression>)

▪ Delays next statement until <expression> evaluates to
TRUE

▪ Example: wait(enable == 1)

36

CSE369, Winter 2024L4: Sequential Logic

ModelSim Waveforms

37

initial begin

d <= 0; reset <= 1;

@(posedge CLK); reset <= 0;

@(posedge CLK); d <= 1;

@(posedge CLK); d <= 0;

@(posedge CLK); #(PERIOD/4) d <= 1;

@(posedge CLK);

$stop();

end

CSE369, Winter 2024L4: Sequential Logic

Summary (1/2)

❖ State elements controlled by clock

▪ Store information

▪ Control the flow of information between other state
elements and combinational logic

❖ Registers implemented from flip-flops

▪ Triggered by CLK, pass input to output, can reset

❖ Critical path constrains clock rate

▪ Timing constants: setup time, hold time, clk-to-q delay,
propagation delays

38

CSE369, Winter 2024L4: Sequential Logic

Summary (2/2)

❖ Generating a clock
▪ Manually create using always block

▪ Need to decide on period

❖ Blocking vs. Non-blocking

▪ Blocking: Statements executed “in series”

▪ Non-blocking: Statements executed “in parallel”

▪ Always use non-blocking for clocked elements

❖ Synchronous vs. Asynchronous

▪ Whether signals are controlled by clock or not

39

