YA UNIVERSITY of WASHINGTON L4: Sequential Logic

CSE369, Winter 2024

Intro to Digital Design

Instructor: Justin Hsia

Teaching Assistants:

Caitlyn Rawlings Donovan Clay
Emilio Alcantara Joy Jung
Naoto Uemura

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Relevant Course Information

+» Lab 3 Demos due during your assigned demo slots

" Don’t forget to submit your lab materials before Wednesday
at 2:30 pm, regardless of your demo time

+» Lab 4 — 7-seg displays

% Quiz 1is next week in lecture
= Last 20 minutes, worth 10% of your course grade
" On Lectures 1-3: CL, K-maps, Waveforms, and Verilog

= Past Quiz 1 (+ solutions) on website: Course Info = Quizzes

YA UNIVERSITY of WASHINGTON

L4: Sequential Logic CSE369, Winter 2024

Synchronous Digital Systems (SDS)

<~ Combinational Logic (CL)

Xp 3 71
Xo= Logic [—Z2
Network
Xn — '—me
—_—

xl—)-
Xo—™

— >Z
Logic [T ™%z

Network

Network of logic gates without
feedback.

Outputs are functions only of
inputs.

gic (5>

+ Sequential Logic (SL)

The presence of feedback
introduces the notion of “state.”

Circuits can “remember” or store
information.

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Uses for Sequential Logic

+ Place to store values for some amount of time:
" Registers
" Memory

« Help control flow of information between ‘W“Mﬁ '
combinational logic blocks

®" Hold up the movement of information to allow for orderly
passage through CL

YA UNIVERSITY of WASHINGTON

Control Flow of Information?

% Circuits can temporarily go to incorrect states!

Copilot Autopilot Request

Pilot in Charge?

Filot Autopilot Request

L4: Sequential Logic

CAR |1

PIC|t o

PAR [1

b [e

. \G\I"'O(— i :

- rre U

CSE369, Winter 2024

Autopilot Engaged

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Accumulator Example

+» An example of why we would need to control
the flow of information.

X /—> Accumulator —> S

«» Want: S = 0; indialize”
for (1=0; 1i<n; 1++)
N— S‘for cond ion™
S = S5 + X '

Lse‘luev\ce (;F .'V‘pUd'S
< Assume:

= Each X value is applied in succession, one per cycle
= The sum since cycle O is presenton S

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Accumulator: First Try

S=S4Y;
Does this work? 1
X)
¢ NO L ¥l qy, CM""‘“H‘I -
(T4
S
5

heavl\/

_ |} instartbnesws

1) How to control the next iteration of the ‘for’
loop?
2) How do we say: ‘S=0"7?

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

State Element: Flip-Flop @

+ Positive edge-triggered D-type flip flop A FF _—%

= “On the rising edge of the clock (o §1),
input d is sampled and transferred to the output g. At other
times, the input d is ignored and the previously sampled

value is retained.”

@
--(L._.__,

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

State Element: Register

gt
RESET Keg\s\'e,\’ - = FF \: 4
Q l -4
2 CLA ! w2

+» n instances of flip-flops together
" One for every bit in input/output bus width

+ Output Q resets to zero when RESET signal is high
during clock trigger

= Some extra circuitry required for this

CSE369, Winter 2024

YA UNIVERSITY of WASHINGTON L4: Sequential Logic

Accumulator: Second Try

Xb 7 Register holds up the

transfer of data to adder
1 Yw\?\j D/

et Yﬁ&\s‘h&(— LOf\\)/CLK
odpat Q

r'k./

LOR /LK \ !

Delay through Register and Adder —>|

T
g

--r&“--
o

*-————

Rough S _l Lx,m. wx.Tﬁm
timing | i , L .
diagram A I o I e 1 1 I

Time
10

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Flip-Flop Timing Terminology (1/2)

+» Camera Analogy: non-blurry digital photo
= Don’t move while camera shutter is opening
= Don’t move while camera shutter is closing
" Check for blurriness once image appears on the display

11

YA UNIVERSITY of WASHINGTON L4: Sequential Logic

CSE369, Winter 2024

Flip-Flop Timing Terminology (2/2)

+» Now applied to sequential logic elements:

= Setup Time: how long the input must be stable before the
CLK trigger for proper input read

" Hold Time: how long the input must be stable after the CLK
trigger for proper input read

= “CLK-to-Q” Delay: how long it takes the output to change,
measured from the CLK trigger

12

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Flip-Flop Timing Behavior

CLIN

A —FF %

' "’riﬂaer |
| |
CLK — - Input date mm be <table.
' 1 v\‘\’\\S PQ,\‘\
$ S P — “setop" Time_
. . Sy
g s
A — 4, <t hold” Time

— vk-to-q delay

aN
N
N
2

13

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Accumulator: Proper Timing |
S¢-1 Y (edernal)

. (
e reset signal shown i

* Also, in practice X, might not arrive at
the adder at the same time as S, _;

e S, temporarily is wrong, but register
always captures correct value \

* In good circuits, instability never
happens around rising edge of CLK

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Review Question

+» Which of the following statements is TRUE?

(A)

/

Se'h)f.) g;l'\o\é\ ‘l‘imes

(B) A flip-flop switches-betweernrOand I on each
. }r\p\:\’ D— oudpvi\' Q
trigger.

(C) In a SDS, we only need to know setup time,
hold time, and clk-to-q delay constants to

ensure correct behavior. als need CL delays, clock periad,
external i/\‘o\,:F 4|‘m‘|r\5 , cte.

(D) None of the @E@@M@J

15

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Model for Synchronous Digital Systems

clock _[1[1 | jnput

input Nregl—e—ep OULDLL

+» Combinational logic blocks separated by registers
" Clock signal connects only to sequential logic elements

" Feedback is optional depending on application

+» How do we ensure proper behavior?

" How fast can we run our clock?

16

YA UNIVERSITY of WASHINGTON L4: Sequential Logic

When Can the Input Change?

« When a register input changes shouldn’t violate hold

time (tpo14) Or setup time (tse4yp) CcOnstraints within a
clock period (tperioa)

» Let tippye,i be the time it takes for the input of a

register to change for the i-th time in a single clock
cycle, measured fror{gl the CLK trigger'

CSE369, Winter 2024

T 1ol o
" Two separate constraints!
p CK g/
@ {thp&\’l —_ Ls old
»
@ -éin\pw‘-lq\ - -épen‘bd . t‘&“(’ _>|/ £
| npd,

Z NVZ72

[3

‘///‘ eer)"ts‘h.r |/ /|

17

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Minimum Delay

+ If shortest path to register input is too short, might
violate hold time constraint

" |nput could change before state is “locked in”
= Particularly problematic with asynchronous signals

Inputs Outeuts
<fi&f/e,¢§mn Combiletional , .
Lobi ., Min Delay = min(CLK-to-Q Delay
+ Vi
Next State Min CL Delay)

*D

Register Min Delay = Hold Time

18

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Maximum Clock Frequency

+ What is the max frequency of this circuit?

® Limited by how much time needed to get correct Next State
to Register (tse1yy CONstraint)

Inputs Outeuts
<cm\&pe § s
analss tereal/ | COMbirjational Max Delav= |
LOL-.C N ax Delay= max(CLK-to-Q Delay
+

|ll>\lext State + Max CL Delay)

Register Min Period = Max Delay + Setup Time
Current State) Max Freq = 1/Min Period

19

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

The Critical Path

« The critical path is the longest delay between any two
registers in a circuit

+» The clock period must be longer than this critical

path, or the signal will not propagate properly to that
next register

Critical Path =
CLK-to-Q Delay
+ CL Delay 1
+ CL Delay 2
+ CL Delay 3
+ Adder Delay
+ Setup Time

8au\<
39y <

20

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

W{(H\ \D.S
Practice Question s 10

'épen‘od\ : -l
q - 1 pice 10

freq= 10" S —period=10's =Ins = [000ps J
+ We want to run on 1 GHz processor. t_4q =100 ps.

tnuie = 200 ps. ooy = thog = 50 ps. What is the
maximum t we can use? G £ | £ Fund = Luere

clk-to-q

—_ Z _
é'\r\‘;,f\'"y\ = {czQ—L éaM_L ‘ém““"émm = 'érev;oA ‘é-fe'lur TD{QQQ SB.OFS
1o 00 100 o000 50

(_(A) | (B) 750 ps (C) (D) 700 ps

21

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Technology
Break

22

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Where Do Timing Terms Come From?

Edge-triggered
D flip-flop:

Clocko—¢

Q|

Datac

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=40852354

23

https://commons.wikimedia.org/w/index.php?curid=40852354

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Safe Sequential Circuits

+» Clocked elements on feedback, perhaps outputs
" Clock signal synchronizes operation
" Clocked elements hide glitches/hazards

_> Fl
Xl _:_' Zl
X2 — Logic H —]Z2
N
Network Ny r‘eﬁi ers
—’

Clock |
Data;)(Compute Valid Compulte X Velid)4 —Compute 4(

. . 1 ! |
O\<a\/ \’(’ (5\\+C|f\€3 L:A(I?e/\ LQ:Q 5 ‘{5@“? é—‘)‘éh&&

24

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Autopilot Revisited .

+ Flip-flops can “filter oumded ehavior:
a

CLK L e
Q{
0]

: . DE+
Copilot Autopilot Request
P P k Dend Q= Autopilot Engaged (M)
"F Q [Dieno
_ L0,
Pilot in Charge? Dieno
I\ "
b Q S"—(Age b'(: (ohrm+&+:\h
Pilot Autopilot Request =y -0 /
,_)|/ — Csalug

25

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Waveform Diagrams Revisited

+ Easiest to start with CLK on top
= Solve signal by signal, from inputs to outputs

®= Can only draw the waveform for a signal if all of its input
waveforms are drawn

+» When does a signal update?

(s
= Astate elelgveat updates based on CLK triggers
cL
= A combination)a/ element updates ANY time ANY of its inputs

changes

26

YA UNIVERSITY of WASHINGTON

L4: Sequential Logic CSE369, Winter 2024

Example: SDS Waveform Diagram

+ Assume: tCZQ =3 tiCkS, tXOR =2 tiCkS, tNOT =l_t|Ck, tS = th =0
" Note: clocking the gate is a terrible idea

CLK

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Verilog: Basic D Flip-Flop, Register

module basic D FF (gq, d, clk);
output logic q; // g is state-holding

input logic d, clk; CLK _ a Q
Ve reac+ + o risih3 et)je)
always ff (@ (posedge clk) of dk sigral D Deno

qe$=,d; // use <= for clocked elements
endmodule

module basic reg (q, d, clk);
output logic [7:0] g;
input 1logic [7:0] d;
input 1logic clk; D
s widdhs of €
always ff ((posedge clk) CLK
Iz 97
endmodule

28

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Procedural Blocks

+» always: loop to execute over and over again

" Block gets triggered by a sensitivity list

= Any object that is assigned a value in an always statement
must be declared as a variable (Logic or reg).

= Example:
- always (¢ (posedge clk)

+ always ff: special SystemVerilog for SL

" Only for use with sequential logic — signal intent that you
want flip-flops

= Example:
- always ff (¢ (posedge clk)

29

YA UNIVERSITY of WASHINGTON

L4: Sequential Logic

Blocking vs. Nonblocking

+» Blocking statement (=): statements executed

sequentially

= Resembles programming languages

<+ Nonblocking statement (<=): statements executed

“in parallel”

" Resembles hardware

«» Example:

begin

b = a;

c = Db;
end Al®

0
D Q
1

always ff @ (posedge clk)

®)-
—0)C

always ff @ (posedge clk)
begin

b <= a; C)B
c <= b;
nd 0 0
e Al® DQ DQ

CSE369, Winter 2024

TO TO
CLK|uI]

30

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

SystemVerilog Coding Guidelines

1) When modeling sequential logic, use nonblocking
assignments

2) When modeling combinational logic with an
always comb block, use blocking assignments

3) When modeling both sequential and combinational logic
within the same always ff block, use nonblocking

assignments

4) Do not mix blocking and nonblocking assignments in the
same always * block

5) Do not make assignments to the same variable from more
than one always * block

31

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Verilog: Reset Functionality

ClLK=—p = Q
D Deno

(Reset

+ Option 1: synchronous reset

module D FFl1 (g, d, reset, clk);
output logic qg; // g is state-holding
input 1logic d, reset, clk;

always ff ((posedge clk)
if (reset) &— reset @n cnly otcur o~ clock 'frigjer

g <= 0; // on reset, set to 0
else
q <= d; // otherwise pass d to g

endmodule

32

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Verilog: Reset Functionality

CLK) Q Q
D Deno
Reset

+» Option 2: asynchronous reset

module D FFl1 (g, d, reset, clk);
output logic qg; // g is state-holding
input 1logic d, reset, clk; any resct paedge, no multer
/ Inee in The clocH cycle
always ff ((posedge clk or poséage reset)
if (reset)

q <= 0; // on reset, set to 0
else
q <= d; // otherwise pass d to g

endmodule

33

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Verilog: Simulated Clock

+» For simulation, you need to generate a clock signal:
= For entirety of simulation/program, so use always block

Explicit | initial Toggle: | initial
Edges: clk = 0; clk = 0;
always begin always
#50 clk <= 1; #50 clk <= ~clk;

#50 clk <= 0;

end R—— "\“\‘C’Ptr\'b 0\

» Define clock period: paramete @eriod = 100D

initial
= Define parameter clk = 0
l ke '#Aec\v\e MGCy > ;mL.s‘*rL,\“'bﬁ
in C always

(period/2) clk <= ~clk;

34

W unNIvERSI

TY of WASHINGTON L4: Sequential Logic

Verilog Testbench with Clock

\
M@?}c
q

o\
T
O

£=1®

<=1
<- 4®
—é: 20

module D FF testbench;
logic CLK, reset, d;é—‘ﬂmdﬂYAiMMB
logic g; ¢ DUT odput

> parameter PERIOD = 100;

(o0 N

D FF dut (.9, .d,
e —

.reset, .CLK); // Instantiate the D FF
// Set up clock
CLK<= ~CLK;

+hese occuf);d’ &'H‘Cr c,[ock "'h‘gjerj

Set up signals

|, Yinitial CLK <= 0;
always # (PERIOD/2)

initial begin

E— d <= 0; reset <= 1;
—> (@ (posedge CIK) ; reset <= 0;
—> (@ (posedge CLK); d <= 1;
) — (@ (posedge CLK); d <= 0;
— (@ (posedge CLK); # (PERIOD/4) d <= 1;
—> ((posedge CLK);
Sstop () ; ?—nbsﬁ%mwﬁ'kwe // end the simulation
end Ly cholce

endmodule

CSE369, Winter 2024

35

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Timing Controls

+ Delay: #<time>

= Delays by a specific amount of simulation time
" Can do calculationsin <t ime>

= Examples: # (PERIOD/4), #50

+~ Edge-sensitive: @ (<pos/negedge> signal)
"= Delays next statement until specified transition on signal
= Example: @ (posedge CLK)

+» Level-sensitive Event: wait (<expression>)

= Delays next statement until <expression> evaluates to
TRUE

" Example: wait (enable == 1)

36

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

ModelSim Waveforms

@Cpusedye clle) _APERIOD/LI
. I] I —

/D _FF_testbench/clk
/D _FF_testbench/reset

/D _FF testbench/d
/D_FF_testbench/q

initial begin
d <= 0; reset <= 1;

@ (posedge CLK) ; reset <= 0;

@ (posedge CLK); d <= 1;

d (posedge CLK); d <= O;L/_\l'\a‘)penjjug‘f &’ PoSeAje

@ (posedge CLK); # (PERIOD/4) d <= 1;

/N

@ (posedge CLK), ; Cat alter Pojedgc

Sstop () ; t ho statement oCcurs es(aCH\/ A ‘oosec)je
end

37

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Summary (1/2)

+ State elements controlled by clock

= Store information

= Control the flow of information between other state
elements and combinational logic

+ Registers implemented from flip-flops
" Triggered by CLK, pass input to output, can reset

+ Critical path constrains clock rate

= Timing constants: setup time, hold time, clk-to-q delay,
propagation delays

38

YA UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Winter 2024

Summary (2/2)

+» Generating a clock
" Manually create using always block
" Need to decide on period
+ Blocking vs. Non-blocking
" Blocking: Statements executed “in series”

II)

" Non-blocking: Statements executed “in paralle
= Always use non-blocking for clocked elements

% Synchronous vs. Asynchronous

= Whether signals are controlled by clock or not

39

