Intro to Digital Design

Combinational Logic

Instructor: Justin Hsia

Teaching Assistants:
Caitlyn Rawlings
Emilio Alcantara
Naoto Uemura

Donovan Clay
Joy Jung
Introducing Your Course Staff

❖ Your Instructor: just call me Justin
 ▪ CSE Associate Teaching Professor
 ▪ From California (UC Berkeley and the Bay Area)
 ▪ Raising a toddler takes up energy and dictates my schedule

❖ TAs:
 ▪ Available in labs, support (office) hours, and on Ed
 ▪ An invaluable source of information and help

❖ Get to know us – we are here to help you succeed!
Course Motivation

❖ Electronics an increasing part of our lives
 ▪ Computers & phones
 ▪ Vehicles (cars, planes)
 ▪ Robots
 ▪ Portable & household electronics

❖ An *introduction* to digital logic design
 ▪ **Lecture:** How to think about hardware, basic higher-level circuit design techniques – preparation for EE/CSE469
 ▪ **Lab:** Hands-on FPGA programming using Verilog – preparation for EE/CSE371
Digital vs. Analog

Digital:
Discrete set of possible values

Binary (2 values):
On, 3.3 V, high, TRUE, "1"
Off, 0 V, low, FALSE, "0"

Analog:
Values vary over a continuous range
Digital vs. Analog Systems

- Digital systems are more reliable and less error-prone
 - Slight errors can cascade in Analog system
 - Digital systems reject a significant amount of error; easy to cascade

- Computers use digital circuits internally
 - CPU, memory, I/O

- Interface circuits with “real world” often analog
 - Sensors & actuators

This course is about logic design, not system design (processor architecture), and not circuit design (transistor level)
Digital Design: What’s It All About?

❖ Come up with an implementation using a set of primitives given a functional description and constraints

❖ Digital design is in some ways more art than a science
 ▪ The creative spirit is in combining primitive elements and other components in new ways to achieve a desired function

❖ However, unlike art, we have objective measures of a design (i.e., constraints):
 ▪ Performance
 ▪ Power
 ▪ Cost
Digital Design: What’s It All About?

❖ How do we learn how to do this?
 ▪ Learn about the primitives and how to use them
 ▪ Learn about design representations
 ▪ Learn formal methods and tools to manipulate representations
 ▪ Look at design examples
 ▪ Use trial and error – CAD tools and prototyping (practice!)
Lecture Outline

❖ Course Logistics
❖ Combinational Logic Review
❖ Combinational Logic in the Lab
Bookmarks

- **Website:** https://cs.uw.edu/369/
 - Schedule (lecture slides, lab specs), weekly calendar, other useful documents

- **Ed Discussion:** https://edstem.org/us/courses/50615/
 - Announcements made here
 - Ask and answer questions – staff will monitor and contribute

- **Gradescope:** https://www.gradescope.com/courses/680677/
 - Lab submissions, Quiz grades, regrade requests

- **Canvas:** https://canvas.uw.edu/courses/1695952/
 - Grade book, Zoom links, lecture recordings
Grading

❖ Labs (66%)
 ▪ 6 regular labs – 1 week each
 • Labs 3-4: 60 points each, Labs 1&2, 5-7: 100 points each
 ▪ 1 “final project” – 2 weeks
 • Lab 8 Check-In: 10 points, Lab 8: 150 points

❖ 3 Quizzes (no final exam)
 ▪ Quiz 1 (10%): 20 min in class on January 30
 ▪ Quiz 2 (10%): 30 min in class on February 20
 ▪ Quiz 3 (14%): 60 min in class on March 5

❖ This class uses a straight scale (> 95% → 4.0)
 ▪ Extra credit points count the same as regular points
Labs

❖ Lab Hours: Wed & Thu 2:30-5:20 pm (CSE 003)
❖ Each student will get a lab kit for the quarter
 ▪ Lab kit picked up from CSE 003 during labs/OHs this week
 ▪ Install software on laptop (Windows or VM)
❖ Labs are combination of report + demo
 ▪ Submit via Gradescope **Wednesdays before 2:30 pm**
 ▪ 10-minute demos done in lab sections (sign-up process)
❖ Late penalties:
 ▪ No lab report can be submitted more than two days late
 ▪ 4 late day tokens to prevent penalties, 10%/day after that
 ▪ No penalties on lab demos, but must be done by EOD Friday
Collaboration Policy

❖ Labs and project are to be completed *individually*
 ▪ Goal is to give every student the hands-on experience
 ▪ Violation of these rules is grounds for failing the class

❖ OK:
 ▪ Discussing lectures and/or readings, studying together
 ▪ *High-level* discussion of general approaches
 ▪ Help with debugging, tools peculiarities, etc.

❖ Not OK:
 ▪ Developing a lab together
 ▪ Giving away solutions or having someone else do your lab for you
Course Workload

- The workload (3 credits) ramps up significantly towards the end of the quarter:

![CSE 369 Lab Hours (2018) graph]

- Average Hours Spent:
 - Regular Labs
 - Project (Lab 8)
Lecture Outline

❖ Course Logistics
❖ Combinational Logic Review
❖ Combinational Logic in the Lab
Combinational vs. Sequential Logic

❖ **Combinational Logic (CL)**

Network of logic gates without feedback.
Outputs are functions only of inputs.

❖ **Sequential Logic (SL)**

The presence of feedback introduces the notion of “state.”
Circuits that can “remember” or store information.
Representations of Combinational Logic

1. Text Description
2. Circuit Description
 - Transistors
 - Logic Gates
3. Truth Table
4. Boolean Expression

All are equivalent!
Example: Simple Car Electronics

- **Door Ajar (DriverDoorOpen, PassengerDoorOpen)**
 - $DA = DDO + PDO$

- **High Beam Indicator (LightsOn, HighBeamOn)**
 - $HBI = LO \cdot HBO$

- **Seat Belt Light (DriverBeltIn, PassengerBeltIn, Passenger)**
 - $SBL = \overline{DBI} + (P \cdot \overline{PBI})$
Truth Tables

❖ Table that relates the inputs to a combinational logic (CL) circuit to its output
 ▪ Output *only* depends on current inputs
 ▪ Use abstraction of 0/1 instead of high/low voltage
 ▪ Shows output for *every* possible combination of inputs ("black box" approach)

❖ How big is the table?
 ▪ 0 or 1 for each of N inputs, so 2^N rows
 ▪ Each output is a separate function of inputs, so don’t need to add rows for additional outputs
CL General Form

If N inputs, how many distinct functions F do we have? 2^N output “positions”, each being 0/1, so 2^{2^N} possible functions.
Logic Gates (1/2)

- Special names and symbols:

 NOT

 $$\begin{array}{c|c|c}
 A & Out \\
 0 & 1 \\
 1 & 0 \\
 \end{array}$$

 AND

 $$\begin{array}{c|c|c|c}
 A & B & Out \\
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
 \end{array}$$

 OR

 $$\begin{array}{c|c|c|c}
 A & B & Out \\
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 1 \\
 \end{array}$$

Circle indicates NOT
Logic Gates (2/2)

- Special names and symbols:

 NAND

 NOR

 XOR

 XNOR

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
More Complicated Truth Tables

3-Input Majority

How many rows? \(2^3 = 8\) rows

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1-bit Adder

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Carry</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[A \cdot B, \ A \oplus B\]
Boolean Algebra

❖ Represent inputs and outputs as variables
 ▪ Each variable can only take on the value 0 or 1

→ ❖ Overbar is NOT: “logical complement”
 ▪ If A is 0, then \overline{A} is 1 and vice-versa

√ ❖ Plus (+) is 2-input OR: “logical sum”

∧ ❖ Product (·) is 2-input AND: “logical product”

❖ All other gates and logical expressions can be built from combinations of these
 ▪ e.g., $A \text{ XOR } B = A \oplus B = \overline{AB} + \overline{BA}$
Truth Table to Boolean Expression

- **Read off of table**
 - For 1, write variable name
 - For 0, write complement of variable

- **Sum of Products (SoP)**
 - Take rows with 1’s in output column, sum products of inputs
 - \(C = \overline{A}B + \overline{B}A \)

- **Product of Sums (PoS)**
 - Take rows with 0’s in output column, product the sum of the complements of the inputs
 - \(C = (A + B) \cdot (\overline{A} + \overline{B}) \)

We can show that these are equivalent!
Basic Boolean Identities

- $X + 0 = X$
- $X + 1 = 1$
- $X + X = X$
- $X + \overline{X} = 1$
- $\overline{X} = X$

- $X \cdot 1 = X$
- $X \cdot 0 = 0$
- $X \cdot X = X$
- $X \cdot \overline{X} = 0$
Basic Boolean Algebra Laws

❖ **Commutative Law:**
\[X + Y = Y + X \quad X \cdot Y = Y \cdot X \]

❖ **Associative Law:**
\[X + (Y + Z) = (X + Y) + Z \quad X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z \]

❖ **Distributive Law:**
\[X \cdot (Y + Z) = X \cdot Y + X \cdot Z \quad X + YZ = (X + Y) \cdot (X + Z) \]
Advanced Laws (Absorption)

- $X + XY = X$
- $XY + X\overline{Y} = X$
- $X + \overline{XY} = X + Y$
- $X(X + Y) = X$
- $(X + Y)(X + \overline{Y}) = X$
- $X(\overline{X} + Y) = XY$
Practice Problem

- **Boolean Function:** \[F = \overline{XYZ} + XZ \]

Truth Table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Simplification:

\[F = \overline{XYZ} + XZ \]

\[= \overline{XYZ} + X \overline{Y}Z + XYZ \]

\[= \overline{XYZ} + XZ \]

\[= (\overline{XY} + X)Z \] (distribution)

\[= (X + Y)Z \] (absorption)

\[= XZ + YZ \] (distribution)

Which of these is “simpler”? 2 gates (1 OR, 1 AND) vs. 3 gates (2 AND, 1 OR)
Technology Break
Lecture Outline

❖ Course Logistics
❖ Combinational Logic Review
❖ Combinational Logic in the Lab
Why Is This Useful?

- Logic minimization: reduce complexity at gate level
 - Allows us to build smaller and faster hardware
 - Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of logic gates
Why Is This Useful?

❖ Logic minimization: reduce complexity at gate level
 ▪ Allows us to build smaller and faster hardware
 ▪ Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of logic gates

❖ Faster hardware?
 ▪ Fewer inputs implies faster gates in some technologies
 ▪ Fan-ins (# of gate inputs) are limited in some technologies
 ▪ Fewer levels of gates implies reduced signal propagation delays
 ▪ # of gates (or gate packages) influences manufacturing costs
 ▪ Simpler Boolean expressions → smaller transistor networks → smaller circuit delays → faster hardware 😊
Are Logic Gates Created Equal?

- No!

<table>
<thead>
<tr>
<th>2-Input Gate Type</th>
<th># of CMOS transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT</td>
<td>2</td>
</tr>
<tr>
<td>AND</td>
<td>6</td>
</tr>
<tr>
<td>OR</td>
<td>6</td>
</tr>
<tr>
<td>NAND</td>
<td>4</td>
</tr>
<tr>
<td>NOR</td>
<td>4</td>
</tr>
<tr>
<td>XOR</td>
<td>8</td>
</tr>
<tr>
<td>XNOR</td>
<td>8</td>
</tr>
</tbody>
</table>

- Can recreate all other gates using only NAND or only NOR gates
 - Called “universal” gates
 - e.g., $A \text{ NAND } A = \overline{A}$, $B \text{ NOR } B = \overline{B}$
 - DeMorgan’s Law helps us here!
DeMorgan’s Law

\[\overline{X + Y} = \overline{X} \cdot \overline{Y} \]
\[\overline{X \cdot Y} = \overline{X} + \overline{Y} \]

In Boolean Algebra, converts between AND-OR and OR-AND expressions

- \[Z = \overline{ABC} + \overline{ABC} + ABC \]
- \[\overline{Z} = (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \]

At gate level, can convert from AND/OR to NAND/NOR gates

- “Flip” all input/output bubbles and “switch” gate

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>\overline{X}</th>
<th>\overline{Y}</th>
<th>\overline{X + Y}</th>
<th>\overline{X \cdot Y}</th>
<th>\overline{X \cdot Y}</th>
<th>\overline{X + Y}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

NOR

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>\overline{X}</th>
<th>\overline{Y}</th>
<th>\overline{X + Y}</th>
<th>\overline{X \cdot Y}</th>
<th>\overline{X \cdot Y}</th>
<th>\overline{X + Y}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
DeMorgan’s Law Practice Problem

❖ Simplify the following diagram:

\[X = \overline{A + B} + \overline{A} \overline{B} + \overline{C} \overline{D} \]

\[X = \overline{A} \overline{B} + A \overline{B} + \overline{C} \overline{D} \]

\[X = \overline{B} + \overline{C} \overline{D} \]

\[X = B(C + D) \]

❖ Then implement with only NAND gates:

1) Let \(E = C + D \), so
\[X = \overline{B + E} \]
\[X = \overline{B \overline{E}} \]

2)
Transistor-Transistor Logic (TTL) Packages

Pin numbering starts at 1, counter-clockwise from dot

Diagrams like these and other useful/helpful information can be found on part data sheets
- It’s really useful to learn how to read these
Mapping truth tables to logic gates

- Given a truth table:
 1) Write the Boolean expression
 2) Minimize the Boolean expression
 3) Draw as gates
 4) Map to available gates
 5) Determine # of packages and their connections

7 nets (wires) in this design
Breadboarding circuits
Summary

- Digital systems are constructed from Combinational and Sequential Logic
- Logic minimization to create smaller and faster hardware
- Gates come in TTL packages that require careful wiring