Intro to Digital Design Combinational Logic

Instructor: Justin Hsia

Teaching Assistants:

Caitlyn Rawlings

Donovan Clay

Emilio Alcantara

Joy Jung

Naoto Uemura

Introducing Your Course Staff

- Your Instructor: just call me Justin
 - CSE Associate Teaching Professor
 - From California (UC Berkeley and the Bay Area)
 - Raising a toddler takes up energy and dictates my schedule

- Available in labs, support (office) hours, and on Ed
- An invaluable source of information and help
- Get to know us we are here to help you succeed!

Course Motivation

- Electronics an increasing part of our lives
 - Computers & phones
 - Vehicles (cars, planes)
 - Robots
 - Portable & household electronics

- An introduction to digital logic design
 - Lecture: How to think about hardware, basic higher-level circuit design techniques – preparation for EE/CSE469
 - Lab: Hands-on FPGA programming using Verilog preparation for EE/CSE371

Digital vs. Analog

Digital:

Discrete set of possible values

Binary (2 values):

On, 3.3 V, high, TRUE, "1" Off, 0 V, low, FALSE, "0"

Analog:

Values vary over a continuous range

Digital vs. Analog Systems

Digital systems are more reliable and less error-prone

L1: Combinational Logic

- Slight errors can cascade in Analog system
- Digital systems reject a significant amount of error; easy to cascade
- Computers use digital circuits internally
 - CPU, memory, I/O
- Interface circuits with "real world" often analog
 - Sensors & actuators

This course is about logic design, not system design (processor architecture), and not circuit design (transistor level)

Digital Design: What's It All About?

- Come up with an implementation using a set of primitives given a functional description and constraints
- Digital design is in some ways more art than a science
 - The creative spirit is in combining primitive elements and other components in new ways to achieve a desired function
- However, unlike art, we have objective measures of a design (i.e., constraints):
 - Performance
 - Power
 - Cost

Digital Design: What's It All About?

- How do we learn how to do this?
 - Learn about the primitives and how to use them
 - Learn about design representations
 - Learn formal methods and tools to manipulate representations
 - Look at design examples
 - Use trial and error CAD tools and prototyping (practice!)

Lecture Outline

- Course Logistics
- Combinational Logic Review
- Combinational Logic in the Lab

Bookmarks

- Website: https://cs.uw.edu/369/
 - Schedule (lecture slides, lab specs), weekly calendar, other useful documents

L1: Combinational Logic

- Ed Discussion: https://edstem.org/us/courses/50615/
 - Announcements made here
 - Ask and answer questions staff will monitor and contribute
- Gradescope: https://www.gradescope.com/courses/680677/
 - Lab submissions, Quiz grades, regrade requests
- Canvas: https://canvas.uw.edu/courses/1695952/
 - Grade book, Zoom links, lecture recordings

Grading

- Labs (66%)
 - 6 regular labs 1 week each
 - Labs 3-4: 60 points each, Labs 1&2, 5-7: 100 points each
 - 1 "final project" 2 weeks
 - Lab 8 Check-In: 10 points, Lab 8: 150 points
- 3 Quizzes (no final exam)
 - Quiz 1 (10%): 20 min in class on January 30
 - Quiz 2 (10%): 30 min in class on February 20
 - Quiz 3 (14%): 60 min in class on March 5
- ❖ This class uses a straight scale (> 95% \rightarrow 4.0)
 - Extra credit points count the same as regular points

Labs

- Lab Hours: Wed & Thu 2:30-5:20 pm (CSE 003)
- Each student will get a lab kit for the quarter
 - Lab kit picked up from CSE 003 during labs/OHs this week

L1: Combinational Logic

- Install software on laptop (Windows or VM)
- Labs are combination of report + demo
 - Submit via Gradescope Wednesdays before 2:30 pm
 - 10-minute demos done in lab sections (sign-up process)
- Late penalties:
 - No lab report can be submitted more than two days late
 - 4 late day tokens to prevent penalties, 10%/day after that
 - No penalties on lab demos, but must be done by EOD Friday

Collaboration Policy

- Labs and project are to be completed individually
 - Goal is to give every student the hands-on experience
 - Violation of these rules is grounds for failing the class

« OK:

- Discussing lectures and/or readings, studying together
- High-level discussion of general approaches
- Help with debugging, tools peculiarities, etc.

Not OK:

- Developing a lab together
- Giving away solutions or having someone else do your lab for you

Course Workload

The workload (3 credits) ramps up significantly towards the end of the quarter:

Lecture Outline

- Course Logistics
- Combinational Logic Review
- Combinational Logic in the Lab

Combinational vs. Sequential Logic

Combinational Logic (CL)

Network of logic gates without feedback.

Outputs are functions only of inputs.

Sequential Logic (SL)

The presence of feedback introduces the notion of "state."

Circuits that can "remember" or store information.

Representations of Combinational Logic

- Text Description
- Circuit Description
 - Transistors Not covered in 369
 - Logic Gates
- Truth Table
- Boolean Expression

All are equivalent!

Example: Simple Car Electronics

- Door Ajar (DriverDoorOpen, PassengerDoorOpen)
 - \blacksquare DA = DDO + PDO

- High Beam Indicator (LightsOn, HighBeamOn)
 - $HBI = LO \cdot HBO$

- Seat Belt Light (DriverBeltIn, PassengerBeltIn, Passenger)
 - SBL = \overline{DBI} + $(P \cdot \overline{PBI})$

CSE369, Winter 2024

Truth Tables

- Table that relates the inputs to a combinational logic (CL) circuit to its output
 - Output only depends on current inputs
 - Use abstraction of 0/1 instead of high/low voltage
 - Shows output for every possible combination of inputs ("black box" approach)

- How big is the table?
 - 0 or 1 for each of N inputs, so 2^N rows
 - Each output is a separate function of inputs, so don't need to add rows for additional outputs

CL General Form

If N inputs, how many distinct functions F do we have?

Function maps each row to 0 or 1, so 2^(2N) possible functions

a	b	c	d	y
0	0	0	0	F(0,0,0,0)
0	0	0	1	F(0,0,0,1)
0	0	1	0	F(0,0,1,0)
0	0	1	1	F(0,0,1,1)
0	1	0	0	F(0,1,0,0)
0	1	0	1	F(0,1,0,1)
0	1	1	0	F(0,1,1,0)
1	1	1	1	F(0,1,1,1)
1	0	0	0	F(1,0,0,0)
1	0	0	1	F(1,0,0,1)
1	0	1	0	F(1,0,1,0)
1	0	1	1	F(1,0,1,1)
1	1	0	0	F(1,1,0,0)
1	1	0	1	F(1,1,0,1)
1	1	1	0	F(1,1,1,0)
1	1	1	1	F(1,1,1,1)

Logic Gates (1/2)

Special names and symbols:

Logic Gates (2/2)

Special names and symbols:

L1: Combinational Logic

More Complicated Truth Tables

3-Input Majority

How many rows?

A	В	С	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

1-bit Adder

Boolean Algebra

- Represent inputs and outputs as variables
 - Each variable can only take on the value 0 or 1
- Overbar is NOT: "logical complement"
 - If A is 0, then \overline{A} is 1 and vice-versa
- ❖ Plus (+) is 2-input OR: "logical sum"
- ❖ Product (·) is 2-input AND: "logical product"
- All other gates and logical expressions can be built from combinations of these
 - e.g., A XOR B = A \oplus B = $\overline{A}B + \overline{B}A$

L1: Combinational Logic

- Read off of table
 - For 1, write variable name
 - For 0, write complement of variable
- Sum of Products (SoP)
 - Take rows with 1's in output column, sum products of inputs

	——— We can show that these
Product of Sums (PoS)	/ are equivalent!

- Product of Sums (PoS)
 - Take rows with 0's in output column, product the sum of the complements of the inputs
 - $C = (A + B) \cdot (\overline{A} + \overline{B})$

Basic Boolean Identities

$$*X + 0 = X$$

$$*X + 1 = 1$$

$$\star X + X = X$$

$$*X + \overline{X} = 1$$

$$* \overline{\overline{X}} = X$$

$$*X \cdot 1 = X$$

$$*X \cdot 0 = 0$$

$$* X \cdot X = X$$

$$* X \cdot \overline{X} = 0$$

Basic Boolean Algebra Laws

Commutative Law:

$$X + Y = Y + X$$

$$X \cdot Y = Y \cdot X$$

Associative Law:

$$X+(Y+Z) = (X+Y)+Z$$

$$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$$

Distributive Law:

$$X \cdot (Y+Z) = X \cdot Y + X \cdot Z$$

$$X+YZ = (X+Y) \cdot (X+Z)$$

Advanced Laws (Absorption)

$$\star X + XY = X$$

$$\star XY + X\overline{Y} = X$$

$$* X + \overline{X}Y = X + Y$$

$$* X(X + Y) = X$$

$$(X + Y)(X + \overline{Y}) = X$$

$$* X(\overline{X} + Y) = XY$$

Practice Problem

* Boolean Function: $F = \overline{X}YZ + XZ$

Truth Table:

Simplification:

L1: Combinational Logic

$$= \overline{X}YZ + X\overline{Y}Z + XYZ$$

$$= \overline{X}YZ + XZ$$

$$= (\overline{X}Y + X)Z$$

$$= (X + Y)Z$$

$$= XZ + YZ$$
which of these is "simpler"?

Technology

Break

Lecture Outline

- Course Logistics
- Combinational Logic Review
- Combinational Logic in the Lab

Why Is This Useful?

- Logic minimization: reduce complexity at gate level
 - Allows us to build smaller and faster hardware
 - Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of logic gates

Why Is This Useful?

- Logic minimization: reduce complexity at gate level
 - Allows us to build smaller and faster hardware
 - Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of logic gates

Faster hardware?

- Fewer inputs implies faster gates in some technologies
- Fan-ins (# of gate inputs) are limited in some technologies
- Fewer levels of gates implies reduced signal propagation delays
- # of gates (or gate packages) influences manufacturing costs
- Simpler Boolean expressions → smaller transistor networks
 → smaller circuit delays → faster hardware

Are Logic Gates Created Equal?

No!

2-Input Gate Type	# of CMOS transistors
NOT	2
AND	6
OR	6
NAND	4
NOR	4
XOR	8
XNOR	8

- Can recreate all other gates using only NAND or only NOR gates
 - Called "universal" gates
 - e.g., A NAND A = \overline{A} , B NOR B = \overline{B}
 - DeMorgan's Law helps us here!

DeMorgan's Law

				NOR		NAND	
X	Y	\overline{X}	$\overline{\mathbf{Y}}$	$\overline{X + Y}$	$\overline{X} \cdot \overline{Y}$	$\overline{X \cdot Y}$	$\overline{X} + \overline{Y}$
0	0	1	1	1		1	
0	1	1	0	0		1	
1	0	0	1	0		1	
1	1	0	0	0		0	

- In Boolean Algebra, converts between AND-OR and OR-AND expressions
 - $Z = \overline{ABC} + \overline{ABC} + A\overline{BC}$
 - $\overline{Z} = (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C})$
- At gate level, can convert from AND/OR to NAND/NOR gates
 - "Flip" all input/output bubbles and "switch" gate

DeMorgan's Law Practice Problem

Simplify the following diagram:

Then implement with only NAND gates:

Transistor-Transistor Logic (TTL) Packages

- Diagrams like these and other useful/helpful information can be found on part data sheets
 - It's really useful to learn how to read these

Mapping truth tables to logic gates

- Given a truth table:
 - 1) Write the Boolean expression
 - 2) Minimize the Boolean expression
 - 3) Draw as gates
 - 4) Map to available gates
 - 5) Determine # of packages and their connections

7 nets (wires) in this design

Breadboarding circuits

Summary

 Digital systems are constructed from Combinational and Sequential Logic

 Logic minimization to create smaller and faster hardware

Gates come in TTL
 packages that require
 careful wiring

