Quartus Prime Lite Version 17.0 Tutorial

Created September 10, 2014; Last Updated January 10, 2024

This tutorial will walk you through the process of developing circuit designs within Quartus, simulating
with Modelsim, and downloading designs to the DE1-SoC board.

':Q:' The steps we show you here will be used throughout the class, so take notes and refer back to
the appropriate sections when you are working on future labs.

[0] Installing the Quartus Software

Most of the designs in this class will be done through the Altera Quartus software. This is preloaded on
machines in the CSE 003 lab and you are welcome to do all the work on these PCs. If you would prefer
to work on your own machine, follow the instructions in Quartus_Install. pdf.

[1] File Setup for CSE369

For each lab in this class, we will create multiple files for your designs, for testing, and for downloading
to the DE1-SoC board. To keep things sane, we suggest creating subdirectories for each lab within a
class directory: create a cse369 directory and then create a lab1 subdirectory for Lab 1. If you are using
the lab machines, put your work onto your Z: drive (shared across all machines — it should be the drive
with your NetID on it).

Download Labl_files Q17.zip from the lab specs and unzip the files into the subdirectory you just
created. These files will help you get started quickly with Quartus.

A Do not reuse the same directory for different labs, because you will want to refer back to a
working design when you develop each new lab.

-~

Q When you start each lab after Lab 1, copy the previous directory over as the new directory so
" that you can reuse many of the files and the setup you did in previous labs.

a1

[2] Creating Verilog Files in Quartus

The initial Lab 1 files set up a Quartus project, but now we need to add some actual “circuitry.”

We will create a simple design of a 2:1 MUX — this is a device with two data inputs i@ and i1, and a
select input sel. The output is equal to the i@ input when sel==0, and the output is equal to the i1

input when sel==1.

1) Start Quartus Il by double-clicking on the DE1_SoC. gpf file.

L)
-

-
- -

Your PC may hide the file extension, so if you just see “DE1_SoC”, hover over the file

and make sure the pop-up information text says “QPF File.”

2) Write your SystemVerilog code. You can download mux2_1.sv and mux2_1_tb. sv from the Lab

1

specs into your labl subdirectory and open them within Quartus. Make sure to check the

“Add file to current project” box in the Open File dialog. These contain the module we are
developing (“mux2_1") and its test bench (“mux2_1_tb”) for verification.

‘O‘
-

Aty

Every Verilog module should have a testbench, because the quickest way to get a
working design is to test each submodule as you write it.

For future labs, you can create code files from scratch by following the below steps:

a.

Create a SystemVerilog file. Go to File—New, select “SystemVerilog HDL File”, and hit “OK”
(Figure 1). System Verilog is “modern” Verilog and has a lot of nice features over previous

versions of Verilog.

b. Name the file. The new file is opened for you in Quartus’ text editor, but doesn’t have a
name yet. Go to File—Save As and give it the same name as the module you are designing
(e.g., mux2_1.sv as shown in Figure 2). The title bar for the editor pane will change.

c. Populate the file. Type away! You may find it easier to copy-and-paste existing code as a

starting point.

Figure 1:
Quartus

» Documents > CSE369 > lab1 v U|| Search lab1 p
New Quartus Prime Project
v Design Files Organize ~ New folder = " o
AHDL File o
Block Diagram/Schematic File Name Date modified
EDIF File 8 This PC
Qsys System File db 11/10/2017 3:10 PM
. T Libraries
SystemVerilog HDL File = Documents
Verilog HDL File & Music
VHDL File £ Pictures
v Memory Files)
Hexadecimal (Intel-Format) File & Videos
Memory Initialization File
v Verification/Debugging Files @ Network =
In-System Sources and Probes File = i N =
Logic Analyzer Interface File
SignalTap Il Logic Analyzer File File n‘e: mux2. 1.sv) 5
University Program VWF ‘r'
+ Other Files Save as type: SystemVerilog HDL Files (*.sv *.v *.vlg *.verilog) v
AHDL Include File
oK Carical felp v|Add file to current ‘ s ‘ c |
A Hide Folders project e ance
Creating a new SystemVerilog file in

Figure 2: Saving and naming Verilog files in Quartus.

[3] Synthesizing a Design

Now that we have the design created in Quartus, we need to check that it is valid Verilog:

1)

2)

3)

Set the “top-level” design. As we go through the class, we will create designs with many
different modules all talking to one-another; Quartus needs to know which of the files holds the
top-level, complete design. In the upper-left side of Quartus is the “Project Navigator.” Select
“Files” in the drop-down menu to the right of the Project Navigator. Right-click on the file
“mux2_1.sv,” then select “Set as Top-Level Entity” (Figure 3).

Run Quartus’ Analysis and Synthesis tool. Look at the top toolbar for the blue checkmark with
the purple triangle and the tiny gate symbol (Figure 4). Press that button to have Quartus check
whether the design is at least syntactically correct.

@ This step is actually optional for running simulations. However, Quartus’ interface for
compilation warnings and errors is better than ModelSim’s, so we typically prefer to fix
our code here. Once you are confident in your syntax, you can skip this step after
making small code changes in-between simulation runs.

Fix any syntax errors. The Analysis and Synthesis tool should run for a little while, and then tell
you in the message window (near the bottom of Quartus) that “Analysis & Synthesis was
successful.” If it does not, then check your design and any error messages found in the message
window — you can usually double-click on the error message and it will take you to exactly
where Quartus thinks the error is. Correct the problems, and re-run Analysis & Synthesis.

Once Quartus declares success, we know that the file is syntactically correct Verilog. However, we don’t
know whether the design is a proper implementation of the desired functionality. For that, we will
simulate the design, which uses the ModelSim simulator to show the actual behavior of our design.

(2 Quartus Prime Lite Edition Figure 3 (left): Setting the top-level file in a Quartus project.
= d [B DE1_SoC | Z 4
Project Navigator 4 o
Files = 60
= DE1_SOC_golden_top.sdc % mod
" DE1_SoC.sv 3
P mux2, 1.svi 4
Open |
d
Remo l

£ Setas Top-Level Entity Ctrl+Shift+V

P T . " . o .
fopettes _— Figure 4 (below): The “Start Analysis & Synthesis” button and where to find it.
12
11 [Quarusprime tieeaion]
14 &
%g File Edit View Project Assignments Processing Tools Window Help
17 = " st | /@GO DB a0 9
19 Project Navigator = = Files faex @ mux2_1.sv
20 Files AT EEMRB OTC Y EE
%% ™ DE1_SOC_golden_top.sdc > q % modglipr:gxga%_(out, i0, i1, sel);
23 = DE1_SoC.sv » 3 input 10, ‘,il, sel;
%é end ™ mux2_1.sv 4
S assian out = (41 & sel) | (0 & ~s

[4] Simulating a Design

In addition to Quartus I, we will be using the ModelSim software, which can simulate Verilog designs
before you ever run them on actual hardware. To help make using the tool easier, we have provided the
following three files as part of Lab1l_files Q17.zip:

1)

2)

3)

Launch_ModelSim. bat: A file to start ModelSim with the correct working directory.

runlab.do: A command file for ModelSim that will compile your design, set up the windows for
the design, and start simulation.

mux2_1 wave.do: A default file that sets up the simulation window.

Start ModelSim by double-clicking Launch_ModelSim.bat. This should show a blue title screen
before the ModelSim opens.

@ If you instead saw a black window flash by and nothing happened, then your ModelSim
is installed at a non-standard location; edit the Launch_ModelSim. bat file and put in
the correct path to the Modelsim. exe executable. Save the file and retry.

The path you enter should resemble the following:
C:\intelFPGA_Lite\17.0\modelsim_ase\win32aloem\modelsim.exe
If your path shows “modelsim_ae”, modify it to be “modelsim_ase” instead.

Simulate the circuit by issuing the command “do runlab.do” in the Transcript pane. The
Transcript pane can be found at the bottom of the ModelSim window (Figure 5). The
runlab. do file will compile and run the simulation for mux2_1.

Q Hitting <Tab> when you have typed “do r” will auto-complete with the full command,
~ since there are no other files in the Lab 1 directory that start with “r”.

View the results in the Wave pane (Figure 6). Time moves from left (start) to right (end), with a
green line for each input and output of the design. When the green line is up, it means that
signal is true; when the green line is down, it means the signal is false.

@ Any red or blue lines indicate that there is a problem in your Verilog files; check that
you have done all of the previous steps correctly.

Edit View Compile Simulate Add Transcript Tools Layout Bookmarks Window Help

h “ Layout [NoDesign

[Type

Library C:Users fjusti/Documents /CSE363 flab. ..

Library $MODEL_TECH/.. faltera/vhd|/220model
_)—“ 220model_ver Library $MODEL_TECH)/.. /altera/verilog/220m...
+-l altera Library $MODEL_TECH/. . /altera/vhdl/altera
4l altera_insim Library ~ $MODEL_TECH]..faltera/vhdlfaltera_L...
1)—“_ altera_Insim_ver Library SMODEL_TECH/.. /alterafverilog/altera...
1)—‘1 altera_mf Library $MODEL_TECHY/.. falterafvhd/altera_mf
:)—l altera_mf_ver Library SMODEL_TECH/.. /altera/verilog/altera...
i}l altera_ver Library SMODEL_TECHY/.. /altera/verilog/altera
4l arriaii Library ~ $MODEL_TECH]../altera/vhdl/arriaii
-4kl arriail_hssi Library $MODEL_TECH/. . altera/vhdi/arriaii_hssi
_ﬂ-l arriaii_hssi_ver Library SMODEL_TECHY/.. /alterafverilog/arriaii...
i"“ arriaii_pcie_hip Library SMODEL_TECHY/.. /altera/vhd|/arriaii_p...
1)-‘1 arriaii_pcie_hip_ver Library $MODEL_TECH)/.. /altera/verilog/arriaii...
+ ;—“_ arriaii_ver Library SMODEL_TECH/. . /alterafverilog/arriaii

arriaiigz Library $MODEL_TECH)/.. faltera/vhd|/arriaiigz
arriaiigz_hssi Library SMODEL _TECHY/.. /alterafvhdl/arriaiigz...

:)ﬂ arriaiigz_hssi_ver Library SMODEL_TECHY/.. /altera/verilog/arriaii. ..
_+)—“ arriaiigz_pde_hip Library $MODEL_TECH)/.. /alterafvhd/arriaiigz...
+-kll arriaiigz_pcie_hip_v... Library $MODEL_TECH/. . /altera/verilog/arriail...
-r}—l arriaiigz_ver Library SMODEL_TECHY/.. /alterafverilog/arriaiigz
+Hll arriav Library ~ $MODEL_TECH/../altera/vhdlfarriav
+-i arriav hSSl ver i $MODEL TECH/.. /altera/veriloa/arriav...

| <No Design Loaded > | <No Context>

Figure 5: Entered the command "do runlab.do" into the Transcript pane. Press <Enter> to issue the command.

m [

_Fle Edit View Compile Snmulate Add Tunscnpt Tools Layout Bookmarks Window Help

L] 20 & [2¢-o6-8ison vpmp|| AWINIS[|s2ER8]
q,JN--»; 100psjl.lllk‘& el tatidan B]
CoumnLayout [peault !]|] J[T ollv
3 sm -Defout —— #) x|| | Objects —— +) x|

| x|| | gm| Wave - Default
¥/Instance Design unit _|Design u/ | ¥[Name ‘

=iz mux2_1_testbench... mux2_1_te... Module |
= dut mux2_1 Modue

=af std std VPackag|
[+ 4 semaphore semaphore SVClass
| maibox std SvParam
(++- 4 process process. SVClass

X #vsim_capacity# Capacity

Figure 6: Simulation results shown in the Wave pane.

[5] Navigating the Simulation
The initial waveforms are rather hard to see, so let’s explore the navigation options in ModelSim:

-:(:):' Many of the following commands will only be usable if the Wave pane is selected. If you don’t
see the Wave pane or ever accidentally close it, go to View—Wave to re-open it.

o Use the Zoom commands: Found in the toolbars near the top of ModelSim.

B LR

Use the left two commands (4 and - magnifying glass) to zoom so that the green waves fill the
Wave pane. Notice that the scrollbar at the bottom now becomes useful, allowing us to move
around in the simulation. The time for each horizontal position is shown at the bottom. The
third button (black-filled magnifying glass) zooms to fit the entire waveform in the window.

e View signal values in the Msgs column: Left-click anywhere within the waveform viewer (the
part with the black background) to move the cursor, which is the yellow vertical line with the
time in yellow at the bottom (Figure 7). The Msgs column will update with the signal values at
the time specified by the cursor (Figure 8).

@ The signal values you will see are @, 1, St@ (“strong 0”), and St1 (“strong 1”). For the
purposes of this class, St@ and St1 are equivalent to @ and 1, respectively.

o Use the Wave Cursor commands to jump to points of interest: Also found in the toolbars near
the top of ModelSim. To be usable, a single signal must be selected/highlighted (either click on
a signal name or somewhere on the green waveform for that signal).

e & &S

Select the i1 signal and play with the six cursor movement commands to see what they do.

1 Wave - Default
B-sBe8 L @D 10&] Y
[Nazim[esess >

Cursor 1
E« __ Djel I KT

Figure 7: You can move the cursor (yellow line) within the
waveform viewer (black background) of the Wave pane. update as you move the cursor.

[6] Saving the Simulation View

Once we have adjusted our simulation view to better display our design results, we will often want to
save these settings into a file so our next simulation run will return to this Wave pane setup.

1) Make sure that the Wave pane is active by clicking anywhere within it (signal list, Msgs column,
or waveform viewer).

2) Select File—»Save Format or press Control-S.

3) Overwrite the file mux2_1 wave.do. In general, we will use the format file naming convention
of <moduleName>_wave. do.

Now when you re-run your simulation, even after changing the Verilog files, it will have the Wave pane
set up exactly the way we left it!

[71 More Complex Designs — Create a 4:1 MUX

The 2:1 MUX is a simple design to get you started. But real designs will have multiple files and won't
have all the scripts set up for you. Here we will show you how to build a new, more complex design that
will demonstrate how to work with the various ModelSim support files.

1) Download mux4_1.sv, which uses mux2_1 as a submodule, and mux4_1_tb. sv from the lab
specs into your lab1 folder. Open them within Quartus, making sure to check the “Add file to
current project” box in the Open File dialog.

2) Setmux4 1.sv as the top-level entity and run the Analysis & Synthesis tool. Fix errors as
necessary until successful.

[7a] More Complex Designs — ModelSim Command File

Before we can simulate, we need to modify runlab. do for the new design. In the text editor of your
choice (e.g., WordPad, Notepad), open runlab.do and make the following modifications (Figure 9):

1) Addvlog"./mux4_1.sv" andvlog"./mux4_1 tb.sv" tothe compilation section. For all
Quartus designs, you will have one “v1log” line for each Verilog file in your design.

2) Change the “vsim” line to end with mux4_1_tb instead of mux2_1_tb to change the module
being simulated/tested.

3) Edit the “do” line to end with mux4_1 wave.do instead of mux2_1_ wave.do to change the
waveform settings. Each module should have its own * wave. do file, so that during debugging
of a large project you can switch between different modules to test.

Save runlab.do, run Launch_ModelSim. bat in the lab1 directory, then execute “do runlab.do”.

The system should start simulating, show the waveform pane, and then give an error that it cannot open
the macro file mux4_1_wave.do. That’s because we haven’t provided the waveform file for you; you
need to create it yourself once you’ve found a simulation view that you like!

=& = | runlab.do - WordPad - olEN
Home View N n
: H v

Corier New <11 - s SEIE 1T 'E =7 d@Find

a
&ac Replace

Paste nymx,x"/"é'

[} select all

o
.a......1 I [J

|# Create work library
vlib work

$ Compile Verilog
All Verilog files that are part of this design should have

e

¢ Call vsim to invoke simulator
¥ Make sure the last item on the line is the name of the

testbench module you want to exgs .
vsim -voptargs="+acc" -t lps -lib wofgk mux2_1 testbench

Source the wave do file
This should be the file that sets up the signal window for

¥

%

¥ © ModUTemgou are testing.
S

¥ Set the window types
view wave

view structure

view signals

¢ Run the simulation
run -all

¢ End

100% (=)

Figure 9: The modifications: (1) add files to compile, (2) change the testbench to simulate, and (3) change waveform settings.

[7b] More Complex Designs — ModelSim Waveform Macro

Our goal is to get the Wave pane properly set up so we can save the waveform settings as a * wave.do

file.

1)

2)

3)

4)
5)

Locate the sim tab (confusingly opened via View—Structure), which may be hidden behind the
“Library” or “Project” tabs on the left side of ModelSim. This tab shows the various modules in
the design.

mux4_1_tb is the top-level design, which contains dut (“device under test”), the name of the
mux4_1 module we are testing. Clicking on the plus next to dut shows the three mux2_1’s inside
of the mux4_1: m@, m1, and m. If you click on any of the units in the sim tab, the Objects pane
next to it shows the signals inside that module (Figure 10).

Click on mux4_1_tb in the sim tab, select all of the signals in the Objects pane except i, and
drag-and-drop them into the Wave pane.

Save the waveform as mux4_1_wave. do to create the missing file for simulation.

Re-run “do runlab.do” from the Transcript pane to get a simulation of the entire design.

Examine the waveforms using the navigation techniques. Figure out what the mux4_1 module actually
does.

sim - Default

#dx| $1Objects

#ax m Wave - Default

ﬁ Instance

lDesign unit |Des

- f mux4_1_testbench
oo dut
LJ #INITIAL#19
=4 std
+d semaphore
A mailbox
|
+-d process

£ #vsim_capacity#

<

mux4_1 t... Moc
mux4_1 Mo
mux4_1_t... Pro
std VIP:
std SV(
std SVF
std SV(

Cap

Value |Kind

xns JFIEEFoan
... Inter...
... Inter...
«ec INREN .
... Inter...
... Inter...

Inter...
Inter...

[[[

Error in macro

./runlab.do line 18

i Library [E5Project |&sim | &
4 Transcript CESY
** Error: Cannot open macro file: mux4_ 1 wave.do -

Figure 10: The sim tab is found on the far-left and contains all of the modules in this design. Selecting a module or submodule

will show all of the signals contained in that module in the Objects pane just to the right.

[8] Process Recap

You now have the commands necessary to develop new designs, commands you will use for all future
labs. Just to make sure you’ve got it, here’s a cheat-sheet of the steps for future Verilog designs:

1) Make a copy of a previous lab directory to build off of what you already have (Quartus project
file, ModelSim files) while keeping the old design as a reference.

2) For each module you need to write:

a) Create and populate two new files, one for the module definition and one for that module’s

test bench.

b) Set the new module file as the top-level module in Quartus.

c) Run Analysis and Synthesis and fix any errors it finds.

d) Edit runlab.do to include the new module and run its test bench and yet-to-be created

simulation view.

e) Start ModelSim and perform “do runlab.do.” Fix any errors the compiler finds.

f) When it complains about a missing * wave. do file, set up the Wave pane by drag-and-
dropping signals from the Object pane. Save the waveform setup using File—“Save

Formatting”, then perform “do runlab.do” again.

g) Check the simulation results, correct errors, and iterate until the module works as intended.

This process has two major features: First, it has you test every module before you work on the larger
modules that call this unit. This will significantly simplify the design process. Second, you have a
separate * wave. do file for each Verilog file. This keeps a formatted test window for each module,
which can help when you discover a fresh bug in a larger design later on. You can always go back and
test a submodule by simply editing the runlab. do file to point to the testbench and * wave. do file for

the unit you want to test.

[9] Mapping a Design to the FPGA Hardware

So far we have developed and tested a design completely in software. Once it is working, it is time to
use Quartus Il to convert that design into a form that can actually be loaded onto the FPGA.

To use the switches, lights, and buttons on the DE1 board, we need to hook up the connections of the
circuit design to the proper inputs and outputs of the FPGA.

Download the file Lab1. sv from the Lab 1 specs into your labl folder, add it to your project, then set it
as the top-level entity.

We now need to compile the design into a bitfile, a file that can be downloaded to the FPGA. To do
that, we press the “Start Compilation” button just to the left of the “Analysis & Synthesis” button we
have used before: P>

This will run the multiple steps necessary to compile the design. You can watch the progress of the
compilation in the Tasks pane in the lower-left of Quartus.

[10] Configuring the FPGA with the Bitfile

We now need to send the bitfile to the DE1-SoC.
1) Connect the DE1-SoC to wall power with the power cord.

2) Make sure that the board is off (i.e., the board should not light up when you plug it in), then
connect the board to your computer’s USB. You can then turn on the DE1-SoC.

3) InQuartus, go to File—0pen. In the “Files of type” box at bottom, select
“Programming Files (*.cdf ...” and then double-click on ProgramTheDE1_SoC. cdf (Figure 11).

4) This will bring up the Programmer dialog box (Figure 12).
a) If the “Start” button is active, proceed to the next step.

b) If the “Start” button is greyed out, you need to first run click the “Hardware Setup...” button.
This will bring up the “Hardware Setup” dialog box. Set “Currently selected hardware” to
“DE-SoC”, and close the dialog box (Figure 13).

5) Click the “Start” button and the DE1 board will be programmed — you’re done!

4
-

E _':' When you are developing a design, you can keep the Programmer dialog box open so that you
" can download the design multiple times, including after changing the input files and recompiling
the design.

10

| < Documents > CSE369 > labla v O] search lab1a
Organize ~ New folder
-

@ Washington ~ [0 Name Date modified L |

4 OneDrive db 11/10/2017 5:04 PM A
incremental_db 11/10/2017 4:25 PM A
= This PC ,
output files 11/10/2017 5:04 PM F

m Libraries simulation 11/10/2017 5:04 PM ;

[%. Documents W 11/10/2017 4:48 PM A

d Music rogramThel 8/14/2017 1:14 PM [«

= Pictures

B Videos

]
¥ Network
v <] ™ >
[]Add file to current Open as:
project Auto)
File name: ‘ V< Programming Files (*.cdf *.sof *. Vs
Open | Cancel ‘

Figure 11: Open the chain description file (.cdf) to program the DE1-SoC

File Edit View Processing Tools Window Help

Search altera.com L]

L ~Hardware Setup... | | DE-SoC [USB-1] Mode: JTAG

| Enable real-time ISP to allow background programming when available

| Progress:

File Device Blank-

Check

Checksum Usercode Program/ Verify
Configure

“‘ Stop

uto De

j“ Delet

<none> SOCVHPS 00000000 <none>

.Joutput_fi... SCSEMA5F31 00AF9541 O00AF9541 v

Examine Security Erase
Bit

dd Fil-‘

hange F

ESave Fi

éd Devi

| mUp

scseMasF a1

f*Dowr|

Figure 12: Programmer dialog box with the “Start” and “Hardware

Setup...” buttons highlighted.

Hardware Settings JTAG Settings

hardware setup applies only to the current programmer window.

Select a programming hardware setup to use when programming devices. This programming

i
Currently selected hardw{: DE-SoC [USB-1])

Available hardware items

Serve Port
I ocal ISR

Hardware
NF-SaC

kAdd Hardware... .

Remove Hardware

\i Close

Figure 13: Hardware Setup dialog box in case the “Start” button in the Programmer dialog box was greyed out.

11

[11] Appendix A: Files in the Default Project

For those who are interested, here are what each of the files contained in Lab1l_files Q17.zip do:

DE1_SoC.gpf
DE1_SoC.gsf

DE1_SoC.sdc
DE1_SoC.srf
Launch_Modelsim. bat
mux2_1_wave.do
ProgramTheDE1_SoC. cdf
runlab.do

Quartus project file. Top-level that groups all the information together.
Preconfigured for the DE1-SoC board.

Sets up the pin assignments, which connects the signals of the user design
to specific pins on the FPGA.

Tells Quartus about the timing of various signals.

Tells Quartus to not print some useless warning messages.

Simple batch file — starts ModelSim in the current directory.

Sets up the waveform viewer for the first design.

Programmer file, tells Quartus how to download designs to the DE1.
ModelSim .do file — compiles and simulates the design.

12

