
Section 8
LED Board and Problem

Decomposition

Administrivia
● Lab 8: It’s final project time!

○ Proposal due next week – submit PDF to Gradescope ahead of time, then talk
through with TA during demo slots (5/22-23).

○ User’s Manual (i.e., Report) due last Friday of class (5/31).
○ Demo done during demo slot the last week of class or scheduled separately

with TAs during Finals Week.

● Quiz 3: In two Tuesdays (5/28) in place of Lecture (1:40-2:40).
○ Less formulaic: routing elements, computational building blocks
○ Study from past quizzes on course website!

● This is the last section! No section next week.

The LED Board

The LED Board Intro and Demo
● Your lab kit comes with a 16 x 16 Bicolor LED Expansion Board for Lab 8.

○ Actually tri-color: red, green, orange (red + green).
○ Find tutorial PDF and starter code (including test program) from Lab 8 spec.

● Attached to DE1-SoC via GPIO1 pin header/connector:

Pixel Arrays
● LED Board is controlled by two 16 x 16 arrays called RedPixels and

GrnPixels.
○ Defined as: logic [15:0][15:0] RedPixels, GrnPixels;
○ These have two packed dimensions (left of variable name) and 0 unpacked

dimensions (right of variable name).

● Can be used on both the right and left side of assignments:
○ Access row i via RedPixels[i].
○ Access pixel at row i and column j via GrnPixels[i][j].

LED Board ModelSim Tips
● Analyzing a 16x16 buffer

can be difficult in ModelSim…

● Here are some tips that could help!

LED Board ModelSim Tips
● Divide your buffer into smaller relevant groupings:

○ Let’s say we view Columns 0 and 15 as some type of border.

LED Board ModelSim Tips
● Create custom radices:

○ It can be tiresome to interpret the lengthy buffer values; one alternative is to
create a custom radix.

○ Let’s say we that in our design all 0’s are classified as OFF and all 1’s are
classified as ON. In your runlab.do file, before the run command, add:

radix define States {
16'b0000010000000000 "OFF",
16'b1111111111111111 "ON" ,
-default hex
-defaultcolor white

}

LED Board ModelSim Tips
● Create custom radices:

○ It can be tiresome to interpret the lengthy buffer values; one alternative is to
create a custom radix.

○ Let’s say we that in our design all 0’s are classified as OFF and all 1’s are
classified as ON. Then in ModelSim:

Digital System Design Process

HDL Organization
● A module is not a function, it is closest to a class.

○ Something that you instantiate, not something that you call – hardware
cannot appear and disappear spontaneously.

● Treat modules as resource managers rather than temporary helpers.
○ Decompose problem into the major resources and computations and build

separate modules around those.

● Hardware organization tends to be more horizontal (i.e., modules
computing things in parallel alongside each other) rather than vertical (i.e.,
a call stack with functions waiting on each other).

Choosing Blocks
● Blocks: List out major components (decompose into reusable

components where applicable).
○ The managed resource for a module, if applicable, will be an internally-defined

signal.
○ Determine whether the component needs state (sequential logic/FSM) or not

(combinational logic).

● Ports: Figure out necessary connections (information passing) between
modules – make as general as possible.

Exercise 1
● We’d like to implement the game of Pong using the LED Board.

○ Player paddles (size 5) should be green, ball (size 1) should be red, top and
bottom row (size 16) should be orange.

○ Ball only moves diagonally, bounces against top and bottom rows and
paddles, and starts from (7,7) in a random diagonal direction (4 options).

○ A point is scored if the ball reaches the leftmost or rightmost column.
○ The paddles move faster than the ball.
○ Player 1 (left) controlled by KEY[3] (up) and KEY[2] (down).
○ Player 2 (right) controlled by KEY[1] (up) and KEY[0] (down).
○ SW[9] is reset, player scores shown on HEX0 (Player 1) and HEX5 (Player 2).

● Brainstorm the major components/resources and create a block diagram.
○ You will need to include LEDDriver (provided), seg7, and clock_divider.

https://en.wikipedia.org/wiki/Pong

Exercise 1 (Sample Solution)
● Major components (sequential logic, combinational logic):

○ LED Driver – provided code to interface with GPIO1 pins
○ Clock Divider – divided_clocks to slow down system
○ Input module – synchronizers, pulse generators
○ Paddle module(s) – paddle positions
○ Ball module – ball position, ball direction, LFSR for starting direction
○ Score module(s) – P1 score, P2 score, win detection
○ Collision detector – uses paddles and ball to trigger ball direction change
○ Board module – combines paddles and ball into RedPixels, GrnPixels
○ 7-segment display driver (x2) – display scores on HEX

Exercise 1 (Sample Solution Block Diagram)

Note: This diagram
assumes that a
point/score can be
detected with just
BallPos, which will
trigger a score
update (Scores) and
a ball reset (Ball).

Note: It took the
staff 5 revisions to
reach this diagram –
these take time to
get right!

P1Up
P1Down
P2Up
P2Down

RedPixels

PaddlesUser Input

LED Driver

P1Pos
P2Pos

BallPos

CLOCK_50

clk
reset

NewDirBallDir

Clock Divider

Board

Scores

seg7 seg7

HEX5 HEX0GPIO1

GrnPixels

KEY SW[9]

Collision
Detection

Ball

P1Score P2Score

Module Implementation and Testing (CL)
● Create module:

○ Module skeleton (end/module, name, port list).
○ Declare intermediate signals.
○ Implement logic (assign, always_comb).

● Create test bench:
○ Start with the module skeleton (end/module).
○ Create signals for all ports of the module you’re going to test.
○ Instantiate device under test (dut as instance name).
○ Define test vectors in an initial block.

■ Run through all possible input combinations in simulation to thoroughly test.
■ Add arbitrary time delays #<num>; (e.g., #10;) in-between input changes.

Exercise 2
● Brainstorm how you would implement (on computer or pseudocode) the

collision_detection module of our game.

○ Inputs:
■ logic [3:0] P1Pos, P2Pos; // paddle positions (offset from top at Row 1: 0-10)
■ logic [3:0][1:0] BallPos; // 2-D position: (x, y) with both coordinates 0-15
■ logic [1:0] BallDir; // 0 = NE, 1 = NW, 2 = SE, 3 = SW

○ Output:
■ logic [1:0] NewDir; // matches BallDir if no collision, else new direction

Exercise 2
● Brainstorm how you would implement (on computer or pseudocode) the

collision_detection module of our game.

○ Inputs:
■ logic [3:0] P1Pos, P2Pos; // paddle positions (offset from top at Row 1: 0-10)
■ logic [3:0][1:0] BallPos; // 2-D position: (x, y) with both coordinates 0-15
■ logic [1:0] BallDir; // 0 = NE, 1 = NW, 2 = SE, 3 = SW

○ Output:
■ logic [1:0] NewDir; // matches BallDir if no collision, else new direction

● Some hints:
○ always_comb blocks can be written a bit like software since the blocking

assignments will override the effects of previous assignments.
○ Only very specific regions where collisions can occur – how to express those?

Exercise 2 (Code Review and Outline)
● Brainstorm how you would implement (on computer or pseudocode) the

collision_detection module of our game.

● Some general ideas:
○ By default, NewDir should be the same as BallDir. The bits of BallDir can

be interpreted as BallDir[1] is north/south and BallDir[0] is west/east.

○ Paddle collisions can only occur if (1) BallPos[1]/x is 1 and the ball is
traveling west or (2) BallPos[1]/x is 14 and the ball is traveling east.
■ Future ball position must be checked against y-positions P#Pos to P#Pos+4.

○ Wall collisions can only occur if (1) BallPos[0]/y is 1 and the ball is traveling
north or (2) BallPos[0]/y is 14 and the ball is traveling south.

Module Implementation and Testing (FSM)
● Module Internals:

○ State Encodings and Variables – enum
○ Next State Logic (ns) – always_comb and case
○ Output Logic – assign/always_comb
○ State Update Logic (ps) and Reset – always_ff

● Create test bench:
○ Same as CL: (1) module skeleton, (2) create signals for dut ports,

(3) instantiate device under test.
○ Generate your simulated clock.
○ Define test vectors in an initial block.

■ Add edge-sensitive time delays @(posedge clk); in-between input changes.
■ To thoroughly test your FSM, need to take every transition that we care about.

Module Implementation and Testing (Other SL)
● Not all sequential logic will be FSMs!

● Module Internals:
○ State Update Logic and Reset – always_ff (depends on desired behavior)

■ Register: Q <= D;
■ Up-counter: count <= count + 1;
■ Shift register: state <= {state[N-2:0], new_bit};

● Create test bench:
○ Generate your simulated clock.
○ Define test vectors in an initial block.

■ Add edge-sensitive time delays @(posedge clk); in-between input changes.
■ Try to thoroughly test all relevant/important behaviors.

Exercise 3
● Brainstorm how you would implement (on computer or pseudocode) the

ball module of our game.

○ Inputs:
■ logic clk, reset;
■ logic [1:0] NewDir; // new direction of travel, accounting for collisions

○ Output:
■ logic [3:0][1:0] BallPos; // 2-D position: (x, y) with both coordinates 0-15
■ logic [1:0] BallDir; // 0 = NE, 1 = NW, 2 = SE, 3 = SW

Exercise 3
● Brainstorm how you would implement (on computer or pseudocode) the

ball module of our game.

○ Inputs:
■ logic clk, reset;
■ logic [1:0] NewDir; // new direction of travel, accounting for collisions

○ Output:
■ logic [3:0][1:0] BallPos; // 2-D position: (x, y) with both coordinates 0-15
■ logic [1:0] BallDir; // 0 = NE, 1 = NW, 2 = SE, 3 = SW

● Some hints:
○ Should we update BallPos based on BallDir or NewDir?
○ Randomized initial direction – can use any 2 bits of LFSR output.

Exercise 3 (Code Review and Outline)
● Brainstorm how you would implement (on computer or pseudocode) the

ball module of our game.

● Some general ideas:
○ Use NewDir to update BallPos to account for collisions. Use NewDir[1] to

increment/decrement y-position and NewDir[0] to increment/decrement
x-position.

○ Use up-counter output with comparator (against constant, e.g., 3) as the
Enable signal to BallPos and BallDir registers to slow down the speed.

○ Reset behavior should set BallPos to any of (7,7), (7, 8), (8,7), or (8,8) – all
valid choices – and then use LFSR output to set BallDir.

Module Implementation and Testing (Top-Level)
● Create module:

○ Start with the normal module outline.
○ Generate/declare internal signals (e.g., port connections for modules).
○ Instantiate internal modules and make port connections.
○ Can include some logic but generally want to keep this to a minimum.

● Create test bench:
○ Structured like a normal test bench.
○ Test vectors should focus on testing module interconnections:

■ Test that the reset affects all of the internal modules that it should.
■ Don’t thoroughly test internal modules again (rely on individual test benches).
■ Test connections between modules – data passing timing and reactions.

● Brainstorm how you would implement (on computer or pseudocode) the
top-level pong
module of our game.

Exercise 4

P1Up
P1Down
P2Up
P2Down

RedPixels

PaddlesUser Input

LED Driver

P1Pos
P2Pos

BallPos

CLOCK_50

clk
reset

NewDirBallDir

Clock Divider

Board

Scores

seg7 seg7

HEX5 HEX0GPIO1

GrnPixels

KEY SW[9]

Collision
Detection

Ball

P1Score P2Score

Exercise 4 (Code Review and Outline)
● Brainstorm how you would implement (on computer or pseudocode) the

top-level pong module of our game.

● Some general ideas:
○ Port list should match the external inputs and outputs from the block

diagram.

○ Declare any signals shown between modules as internal signals.

○ Instantiate all of the blocks shown in the block diagram.
■ Can likely use (.*) automatic port connections!

Lab 8 Workshop

Lab 8 Workshop
● You can find the Lab 8 possible projects on the spec:

https://courses.cs.washington.edu/courses/cse369/24sp/labs/lab8.html#i
nstr

○ Pick 1-2 that you’re thinking of doing and decompose the problem into its
major components.

○ Attempt to create a block diagram.
■ Feel free to ask the TAs and your peers for help and feedback!

https://courses.cs.washington.edu/courses/cse369/24sp/labs/lab8.html#instr
https://courses.cs.washington.edu/courses/cse369/24sp/labs/lab8.html#instr

