
Section 7
Common Issues When
Connecting Modules

Administrivia
● Lab 7: Report due next Wednesday (5/15) @ 2:30 pm,

demo by last OH on Friday (5/17), but expected during your assigned slot.
○ Tunable cyber player opponent (counter, LFSR, adder).

● Lab 8: Final project is coming up!
○ Choose from 8 possible projects or suggest your own.
○ Range of difficulties (and point values).
○ Extra credit opportunities for early finish and bonus features!

General Debugging Tips

SystemVerilog Debugging
● Many things are similar to software debugging!

○ Have compiler messages and program output to work with.
○ Identify the behavior(s) that differ from what you expect and work backwards

from there.
○ Need to understand data representation and manipulation.

SystemVerilog Debugging
● Many things are similar to software debugging!

○ Have compiler messages and program output to work with.
○ Identify the behavior(s) that differ from what you expect and work backwards

from there.
○ Need to understand data representation and manipulation.

● However, many things are different in hardware!
○ Parallel (instead of sequential) execution makes interpreting programs more

difficult.
■ We often rely on simulation waveforms instead of terminal output.
■ Timing is always a factor/consideration (e.g., timing delays, sensitivity lists,

blocking vs. non-blocking assignments).
○ Can make mistakes between simulation and bit file (e.g., clock_divider).

General Debugging Tips
● The best debugging advice is to not have to debug at all!

○ Focus on the design (i.e., block diagrams, state diagrams) to avoid impractical
designs and major logical flaws.

General Debugging Tips
● The best debugging advice is to not have to debug at all!

○ Focus on the design (i.e., block diagrams, state diagrams) to avoid impractical
designs and major logical flaws.

● Staring at code until you think you spot a bug is generally not an effective
way to debug.
○ Of course it looks logically correct to you – you wrote it!
○ SystemVerilog is a really tricky language – we’ve only scratched the surface

and the code often obfuscates the synthesized hardware.

● Instead, lean on the available tools, which are intended to help you.
○ We’ll cover some tips in the following slides.

Quartus Debugging Tips
● The built-in syntax highlighting can help find typos in keywords (black vs.

blue text) and what is currently commented out (green vs. not green).

● Double-clicking a word will highlight all instances of that word in your
code, making for easier visual scanning and spotting of typos.

● Pay attention to compiler output messages, which usually point out the
problematic line of code!
○ Can filter by (1) Errors , (2) Critical Warnings , and (3) Warnings .
○ Some common messages and their suggested fixes can be found in our

SystemVerilog Warnings & Errors Doc.
○ Double-click a warning or error message to have it automatically take you to

the appropriate point in the code.

https://docs.google.com/document/d/1Etvnj-PRnN582v-uE6GyvP_7pQbCFebsWZlFTRNgTTg/edit?usp=sharing

ModelSim Debugging Tips
● ModelSim has its own compiler so pay attention to output messages here

as well.

● Add internal signals from any instantiated module to your simulation!
○ For a buggy signal, add all signals involved in the computation of that signal.

● Make sure you’re using the appropriate radix (e.g., binary vs. decimal vs.
unsigned) for that signal’s particular use case.

● Red lines have multiple causes; it’s important to identify which is the case
so you can narrow down your fix.
○ Undefined signal (e.g., no initialization), net contention (e.g., multiple drivers),

explicit don’t care in code (e.g., default: leds = 7'bX;).

Debugging Time!

Exercise 1 – Interpreting Messages
● Given the following modules and error messages, identify & fix the bug.

2 module DE1_SoC (input logic [9:0] SW, output logic [9:0] LEDR);
3 ex1 e1 (.dout(LEDR[0]), .upc(SW[1:0]));
4 endmodule // DE1_SoC

2 module ex1 (output logic dout, input logic [2:0] upc);
3 assign dout = upc[1] & upc[0] ^ upc[2]};
4 endmodule // ex1

Exercise 1 (Solution)
● Given the following modules and error messages, identify & fix the bug.

2 module DE1_SoC (input logic [9:0] SW, output logic [9:0] LEDR);
3 ex1 e1 (.dout(LEDR[0]), .upc(SW[2:0]));
4 endmodule // DE1_SoC

2 module ex1 (output logic dout, input logic [2:0] upc);
3 assign dout = upc[1] & upc[0] ^ upc[2]};
4 endmodule // ex1

← changed to [2:0]

Exercise 2 – Port Connection Analysis
● Given the modules to the right, analyze

the ports instantiations in ex2
independently.
○ Is there an issue?
○ If so, what is it? Do you think it will

produce a warning or an error?

2 module ports (input logic a,
3 input logic [1:0] b,
4 output logic c);
5 endmodule // ports

 2 module ex2 (input logic a, b, d,
 3 input logic [1:0] e,
 4 output logic c);
 5
 6 ports option1 (.a, .c);
 7 ports option2 (.a, .b(e), .c);
 8 ports option3 (.*);
 9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

Exercise 2-1 (Solution)
● option1: 2 module ports (input logic a,

3 input logic [1:0] b,
4 output logic c);
5 endmodule // ports

 2 module ex2 (input logic a, b, d,
 3 input logic [1:0] e,
 4 output logic c);
 5
 6 ports option1 (.a, .c);
 7 ports option2 (.a, .b(e), .c);
 8 ports option3 (.*);
 9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

Exercise 2-1 (Solution)
● option1:

○ Only 2 ports connected to 3-port
module.

○ Compiler warning:

2 module ports (input logic a,
3 input logic [1:0] b,
4 output logic c);
5 endmodule // ports

 2 module ex2 (input logic a, b, d,
 3 input logic [1:0] e,
 4 output logic c);
 5
 6 ports option1 (.a, .c);
 7 ports option2 (.a, .b(e), .c);
 8 ports option3 (.*);
 9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

⚠ Warning (12241): 1 hierarchies have connectivity warnings - see the
Connectivity Checks report folder

ⓘ Info: Quartus Prime Analysis & Synthesis was successful. 0 errors, 2
warnings

Exercise 2-2 (Solution)
● option2: 2 module ports (input logic a,

3 input logic [1:0] b,
4 output logic c);
5 endmodule // ports

 2 module ex2 (input logic a, b, d,
 3 input logic [1:0] e,
 4 output logic c);
 5
 6 ports option1 (.a, .c);
 7 ports option2 (.a, .b(e), .c);
 8 ports option3 (.*);
 9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

Exercise 2-2 (Solution)
● option2:

○ No issues!
○ Though this is confusing port naming

and is not recommended.

2 module ports (input logic a,
3 input logic [1:0] b,
4 output logic c);
5 endmodule // ports

 2 module ex2 (input logic a, b, d,
 3 input logic [1:0] e,
 4 output logic c);
 5
 6 ports option1 (.a, .c);
 7 ports option2 (.a, .b(e), .c);
 8 ports option3 (.*);
 9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

Exercise 2-3 (Solution)
● option3: 2 module ports (input logic a,

3 input logic [1:0] b,
4 output logic c);
5 endmodule // ports

 2 module ex2 (input logic a, b, d,
 3 input logic [1:0] e,
 4 output logic c);
 5
 6 ports option1 (.a, .c);
 7 ports option2 (.a, .b(e), .c);
 8 ports option3 (.*);
 9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

Exercise 2-3 (Solution)
● option3:

○ Implicit port connections fails for b
because the types don’t match.

○ Compiler errors:

2 module ports (input logic a,
3 input logic [1:0] b,
4 output logic c);
5 endmodule // ports

 2 module ex2 (input logic a, b, d,
 3 input logic [1:0] e,
 4 output logic c);
 5
 6 ports option1 (.a, .c);
 7 ports option2 (.a, .b(e), .c);
 8 ports option3 (.*);
 9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

⮾ Error (10897): SystemVerilog error at ex2.sv(8): can't implicitly connect
port "b" on instance "option3" of module "ports" - matching object in
present scope does not have an equivalent data type
⮾ Error (10784): HDL error at ports.sv(3): see declaration for object "b"
⮾ Error (10784): HDL error at ex2.sv(2): see declaration for object "b"
⮾ Error (12153): Can't elaborate top-level user hierarchy

⮾ Error: Quartus Prime Analysis & Synthesis was unsuccessful. 4 errors, 0
warnings

Exercise 2-4 (Solution)
● option4: 2 module ports (input logic a,

3 input logic [1:0] b,
4 output logic c);
5 endmodule // ports

 2 module ex2 (input logic a, b, d,
 3 input logic [1:0] e,
 4 output logic c);
 5
 6 ports option1 (.a, .c);
 7 ports option2 (.a, .b(e), .c);
 8 ports option3 (.*);
 9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

Exercise 2-4 (Solution)
● option4:

○ There is no d port for ports (only 3
ports, too).

○ Compiler errors:

2 module ports (input logic a,
3 input logic [1:0] b,
4 output logic c);
5 endmodule // ports

 2 module ex2 (input logic a, b, d,
 3 input logic [1:0] e,
 4 output logic c);
 5
 6 ports option1 (.a, .c);
 7 ports option2 (.a, .b(e), .c);
 8 ports option3 (.*);
 9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

⮾ Error (10284): Verilog HDL Module Instantiation error at ex2.sv(9): port
"d" is not declared by module "ports"

⮾ Error: Quartus Prime Analysis & Synthesis was unsuccessful. 1 error, 0
warnings

Exercise 2-5 (Solution)
● option5: 2 module ports (input logic a,

3 input logic [1:0] b,
4 output logic c);
5 endmodule // ports

 2 module ex2 (input logic a, b, d,
 3 input logic [1:0] e,
 4 output logic c);
 5
 6 ports option1 (.a, .c);
 7 ports option2 (.a, .b(e), .c);
 8 ports option3 (.*);
 9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

Exercise 2-5 (Solution)
● option5:

○ Multiple drivers: c is an output port for
ports but connected to an input port.

○ Compiler errors:

2 module ports (input logic a,
3 input logic [1:0] b,
4 output logic c);
5 endmodule // ports

 2 module ex2 (input logic a, b, d,
 3 input logic [1:0] e,
 4 output logic c);
 5
 6 ports option1 (.a, .c);
 7 ports option2 (.a, .b(e), .c);
 8 ports option3 (.*);
 9 ports option4 (.a, .b(e), .c, .d);
10 ports option5 (.a, .b(e), .c(d));
11
12 endmodule // ex2

⮾ Error (10031): Net "d" at ex2.sv(10) is already driven by input port "d",
and cannot be driven by another signal
⮾ Error (10032): "d" was declared at ex2.sv(2)
⮾ Error (12153): Can't elaborate top-level user hierarchy

⮾ Error: Quartus Prime Analysis & Synthesis was unsuccessful. 3 errors, 0
warnings

Contention on a Net
● A situation where two or more drivers (sources of signals) are trying to

drive a net to different values at the same time is known as contention.
○ This will show up as an X value in simulation, and could result in damage to

the drivers in a physical device!

Contention on a Net
● A situation where two or more drivers (sources of signals) are trying to

drive a net to different values at the same time is known as contention.
○ This will show up as an X value in simulation, and could result in damage to

the drivers in a physical device!

● Example:

module DE1_SoC (input logic [9:0] SW, output logic [6:0] HEX0, HEX1);

seg7 display(.leds(HEX0), .bcd({SW[3], SW[2], SW[1], SW[0]}));

// Default values, turns off the HEX displays
assign HEX0 = 7'b1111111;
assign HEX1 = 7'b1111111;

endmodule // DE1_SoC

Contention on a Net Example Analysis
module DE1_SoC (input logic [9:0] SW, output logic [6:0] HEX0, HEX1);

seg7 display(.leds(HEX0), .bcd({SW[3], SW[2], SW[1], SW[0]}));

// Default values, turns off the HEX displays
assign HEX0 = 7'b1111111;
assign HEX1 = 7'b1111111;

endmodule // DE1_SoC

⮾ Error (12014): Net "HEX0[6]", which fans out to "HEX0[6]", cannot be assigned more than one value
⮾ Error (12014): Net "HEX0[5]", which fans out to "HEX0[5]", cannot be assigned more than one value
⮾ Error (12014): Net "HEX0[4]", which fans out to "HEX0[4]", cannot be assigned more than one value
⮾ Error (12014): Net "HEX0[3]", which fans out to "HEX0[3]", cannot be assigned more than one value
⮾ Error (12014): Net "HEX0[2]", which fans out to "HEX0[2]", cannot be assigned more than one value
⮾ Error (12014): Net "HEX0[1]", which fans out to "HEX0[1]", cannot be assigned more than one value
⮾ Error (12014): Net "HEX0[0]", which fans out to "HEX0[0]", cannot be assigned more than one value

Error (12015): Net is fed by "VCC"
Error (12015): Net is fed by "seg7:display|leds[0]"

⮾ Error: Quartus Prime Analysis & Synthesis was unsuccessful. 21 errors, 0 warnings

these are expanded messages

multiply
driven!

remove the unnecessary
assignment here

Example 1
Identify the bug in the following code:

*Note that reset is omitted for simplicity

module parent (
 input logic Clk, in,
 output logic out
);

 child c (.Clk, .in, .out);

endmodule // parent

module child (
 input logic clk, in,
 output logic out
);

 logic ps, ns;

 always_comb
 case (ps)
 1’b0: ns = (in ? 1’b1 : 1’b0);
 1’b1: ns = (in ? 1’b0 : 1’b1);
 default: ns = ps;
 endcase

 assign out = ns;

 always_ff @(posedge clk)
ps <= ns;

endmodule // child

⮾ Error: Port “Clk” does not exist in macrofunction “f”

module child (
 input logic clk, in,
 output logic out
);

 logic ps, ns;

 always_comb
 case (ps)
 1’b0: ns = (in ? 1’b1 : 1’b0);
 1’b1: ns = (in ? 1’b0 : 1’b1);
 default: ns = ps;
 endcase

 assign out = ns;

 always_ff @(posedge clk)
ps <= ns;

endmodule // child

Example 1
Clk ≠ clk!

Make sure port connections are sound
(esp. c vs. C is hard to tell on Quartus)

*Note that reset is omitted for simplicity

module parent (
 input logic clk, in,
 output logic out
);

 // alternatively, .clk(Clk)
 child c (.clk, .in, .out);

endmodule // parent

Example 2
Identify the bug in
the following code:

module DE1_SoC (
 input logic CLOCK_50,
 output logic [6:0] HEX0, …
 …
 output logic [9:0] SW
);

 // instantiate an fsm that lights LEDR[0] on
 // when KEY[0] is pressed for two frames in a row
 fsm f (.clk(CLOCK_50), .in(KEY[0]) .out(LEDR[0]));

endmodule // DE1_SoC
Buggy Simulation:

Example 2
KEYs are Active-Low!

Make sure to account for
hardware realities.

module DE1_SoC (
 input logic CLOCK_50,
 output logic [6:0] HEX0, …
 …
 output logic [9:0] SW
);

 // instantiate an fsm that lights LEDR[0] on
 // when KEY[0] is pressed for two frames in a row
 fsm f (.clk(CLOCK_50), .in(~KEY[0]) .out(LEDR[0]));

endmodule // DE1_SoC

Correct Simulation:

Timing Issues

Example 3 - Different Clocks Issue
● A situation where not all module instances are using the same clock.

● For example, say we have this register A that captures and outputs a 4-bit

input signal:

module A(
 input logic clk,
 input logic reset,
 input logic [3:0] in,
 output logic [3:0] out);

 always_ff @(posedge clk)
 if (reset)
 out <= 0;
 else
 out <= in;
endmodule // moduleA

Example 3 - Different Clocks Issue

module top_module(
 input logic CLOCK_50,
 input logic reset,
 input logic [3:0] in,
 output logic [3:0] out1, out2

);

// clock divider
logic [31:0] clock;
clock_divider cdiv (.clock(clk), .divided_clocks(clock));

A a1(.clk(CLOCK_50), .reset, .in, .out(out1));
A a2(.clk(clock[1]), .reset, .in, .out(out2));

endmodule // top_module

module A(
 input logic clk,
 input logic reset,
 input logic [3:0] in,
 output logic [3:0] out);

 always_ff @(posedge clk)
 if (reset)
 out <= 0;
 else
 out <= in;
endmodule // moduleA

In the top-level module, we instantiate module A
twice.

Example 3 - Different Clocks Issue

module top_module(
 input logic CLOCK_50,
 input logic reset,
 input logic [3:0] in,
 output logic [3:0] out1, out2

);

// clock divider
logic [31:0] clock;
clock_divider cdiv (.clock(clk), .divided_clocks(clock));

// a1 is using a 50Mhz clock
// a2 is using a slower clock with 12.5 MHz
A a1(.clk(CLOCK_50), .reset, .in, .out(out1));
A a2(.clk(clock[1]), .reset, .in, .out(out2));

endmodule // top_module

module A(
 input logic clk,
 input logic reset,
 input logic [3:0] in,
 output logic [3:0] out);

 always_ff @(posedge clk)
 if (reset)
 out <= 0;
 else
 out <= in;
endmodule // moduleA

● Instance a1 with the clock_50
● Instance a2 with the divided clock

Example 3 - Different Clocks Issue

module top_module(
 input logic CLOCK_50,
 input logic reset,
 input logic [3:0] in,
 output logic [3:0] out1, out2

);

// clock divider
logic [31:0] clock;
clock_divider cdiv (.clock(clk), .divided_clocks(clock));

// a1 is using a 50Mhz clock
// a2 is using a slower clock with 12.5 MHz
A a1(.clk(CLOCK_50), .reset, .in, .out(out1));
A a2(.clk(clock[1]), .reset, .in, .out(out2));

endmodule // top_module

module A(
 input logic clk,
 input logic reset,
 input logic [3:0] in,
 output logic [3:0] out);

 always_ff @(posedge clk)
 if (reset)
 out <= 0;
 else
 out <= in;
endmodule // moduleA

● This will cause a desynchronization in our system!
● Easy to miss when going between hardware ↔ sim.

Different Clocks Issue (Simulation)

Output of the module A that does not use divided clock (50 MHz clock)

Output of the module A that does use divided clock (12.5 MHz clock)

Different Clocks Issue (Simulation)
Let’s take a closer look at the clock in each module

The clocks in module a1 and a2 have different clock frequency. Module a2
has a slower clock than a1 does, causing desynchronization issue.

Different Clocks Issue (Simulation)

Using the same clock!
module top_module(...);

…
A a1(.clk(CLOCK_50), .reset, .in, .out(out1));
A a2(.clk(CLOCK_50), .reset, .in, .out(out2));

endmodule // top_module

Exercise 3
● In Section 6, we worked on a design of the psychic tester, where the

user needs to correctly guess 8 consecutive 4-bit patterns to be declared
a psychic.

● Say we want to modify our design so the next signal comes directly
from user_input.

Exercise 3
● In Section 6, we worked on a design of the psychic tester, where the

user needs to correctly guess 8 consecutive 4-bit patterns to be declared
a psychic.

● Say we want to modify our design so the next signal comes directly
from user_input.

● Let’s see how one might modify psychic_tester code:

Exercise 3

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);
 input logic clk, rst, submit_ext;
 input logic [3:0] guess_ext;
 output logic psychic;

 logic [3:0] pattern, guess;
 logic correct, next, submit;

 genPatt pat (.clk, .rst, .pattern, .next);
 userIn inp (.clk, .rst,
 .guess_ext, .submit_ext, .guess, .submit);
 checkGuess chk (.pattern, .guess, .correct);
 countRight cnt (.clk, .rst, .correct, .submit, .next, .psychic);
endmodule // psychic_tester

● Remove the next signal from countRight:

Exercise 3

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);
 input logic clk, rst, submit_ext;
 input logic [3:0] guess_ext;
 output logic psychic;

 logic [3:0] pattern, guess;
 logic correct, next, submit;

 genPatt pat (.clk, .rst, .pattern, .next);
 userIn inp (.clk, .rst,
 .guess_ext, .submit_ext, .guess, .submit);
 checkGuess chk (.pattern, .guess, .correct);
 countRight cnt (.clk, .rst, .correct, .submit, .psychic);
endmodule // psychic_tester

● Assign next to submit_ext

Exercise 3

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);
 input logic clk, rst, submit_ext;
 input logic [3:0] guess_ext;
 output logic psychic;

 logic [3:0] pattern, guess;
 logic correct, next, submit;
 assign next = submit_ext;
 genPatt pat (.clk, .rst, .pattern, .next);
 userIn inp (.clk, .rst,
 .guess_ext, .submit_ext, .guess, .submit);
 checkGuess chk (.pattern, .guess, .correct);
 countRight cnt (.clk, .rst, .correct, .submit, .psychic);
endmodule // psychic_tester

● Because we didn’t modify how our input and outputs work and how the
design should behave, we should be able to use the same testbench!

● Let’s take a look at ModelSim and see if things are behaving the way we
expect…

Exercise 3

● Because we didn’t modify how our input and outputs work and how the
design should behave, we should be able to use the same testbench!

● Let’s take a look at ModelSim and see if things are behaving the way we
expect…

Exercise 3

● We don’t get a high signal for psychic anymore…
● Group brainstorm: What could be causing this issue? What would you investigate?

Exercise 3a

● We don’t get a high signal for psychic anymore…
● Group brainstorm: What could be causing this issue? What would you investigate?
● Check intermediate signals!

○ Counter signal
○ Pattern signal

● Investigate internal signal of submodules that could have been affected by our
modifications!

Exercise 3a

● Let’s analyze our internal signals

Exercise 3b

● Group Brainstorming: What incorrect behavior do you notice?

● Let’s analyze our internal signals

Exercise 3b

● It's clear that our pattern is not changing like we expect anymore!
● Group Brainstorming: What other weird behaviors do you notice?

● Let’s analyze our internal signals

Exercise 3b

● It's clear that our pattern is not changing like we expect anymore!
● Group Brainstorming: What other weird behaviors do you notice?
● Notice how at 310 ps our pattern changes, even though the next signal

should be synchronized to have a 1 clock delay!

● Let’s analyze our internal signals

Exercise 3b

● It's clear that our pattern is not changing like we expect anymore!
● Group Brainstorming: What other weird behaviors do you notice?
● Notice the difference between signals next and submit! One is not

edge detected!

● Group Brainstorm: Let’s go back to the code and see if we can spot the
bug! What lines could be causing our timing issue?

Exercise 3c

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);
 input logic clk, rst, submit_ext;
 input logic [3:0] guess_ext;
 output logic psychic;

 logic [3:0] pattern, guess;
 logic correct, next, submit;
 assign next = submit_ext;
 genPatt pat (.clk, .rst, .pattern, .next);
 userIn inp (.clk, .rst,
 .guess_ext, .submit_ext, .guess, .submit);
 checkGuess chk (.pattern, .guess, .correct);
 countRight cnt (.clk, .rst, .correct, .submit, .psychic);
endmodule // psychic_tester

● Group Brainstorm: Remember the two weird behaviors we noticed:
pattern is not synchronized and next is not being edge detected.

Exercise 3c

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);
 input logic clk, rst, submit_ext;
 input logic [3:0] guess_ext;
 output logic psychic;

 logic [3:0] pattern, guess;
 logic correct, next, submit;
 assign next = submit_ext;
 genPatt pat (.clk, .rst, .pattern, .next);
 userIn inp (.clk, .rst,
 .guess_ext, .submit_ext, .guess, .submit);
 checkGuess chk (.pattern, .guess, .correct);
 countRight cnt (.clk, .rst, .correct, .submit, .psychic);
endmodule // psychic_tester

● We incorrectly assigned next to submit_ext instead of submit!

Exercise 3c

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);
 input logic clk, rst, submit_ext;
 input logic [3:0] guess_ext;
 output logic psychic;

 logic [3:0] pattern, guess;
 logic correct, next, submit;
 assign next = submit_ext;
 genPatt pat (.clk, .rst, .pattern, .next);
 userIn inp (.clk, .rst,
 .guess_ext, .submit_ext, .guess, .submit);
 checkGuess chk (.pattern, .guess, .correct);
 countRight cnt (.clk, .rst, .correct, .submit, .psychic);
endmodule // psychic_tester

● We incorrectly assigned next to submit_ext instead of submit!
● Fixing the bug:

Exercise 3c

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);
 input logic clk, rst, submit_ext;
 input logic [3:0] guess_ext;
 output logic psychic;

 logic [3:0] pattern, guess;
 logic correct, next, submit;
 assign next = submit;
 genPatt pat (.clk, .rst, .pattern, .next);
 userIn inp (.clk, .rst,
 .guess_ext, .submit_ext, .guess, .submit);
 checkGuess chk (.pattern, .guess, .correct);
 countRight cnt (.clk, .rst, .correct, .submit, .psychic);
endmodule // psychic_tester

That’s all!
Thanks for coming!

