Section 6

User Input and Top-Level
Modules

Administrivia

e Lab 6: Report due next Wednesday (5/8) @ 2:30 pm,

demo by last OH on Friday (5/10), but expected during your assigned slot.
o A\ Thislabis a LOT harder than Lab 5 A\

e Lab 7: Reportdue 5/15, demo by last OH on 5/17. "~ .
o Building on top of Lab 6 using building blocks; comparaW

User Input Issues

e A major advantage of digital systems is the computational speed
(e.g., 50 MHz clock means a computation every 20 ns!)

e This can be difficult to reconcile with user inputs because humans can't
move that quickly.

o We can't control when in a clock cycle our input changes. How do we avoid
metastability?

o What if we only wanted to change an input for a clock cycle?

User Input Issues

e A major advantage of digital systems is the computational speed
(e.g., 50 MHz clock means a computation every 20 ns!)

e This can be difficult to reconcile with user inputs because humans can't
move that quickly.

o We can't control when in a clock cycle our input changes. How do we avoid
metastability?

o What if we only wanted to change an input for a clock cycle?

e Solutions:

o Add a synchronizer (typically for all external inputs except reset).
o Add a edge detector / pulse generator (typically for KEYS).

Exercise 1a (Synchronizer)

e We will use a 2 flip-flop synchronizer to combat metastability:

CLK

External

o Implement this in a module called synch.

Exercise 1a (Solution) e

External s .0

e A2 flip-flop synchronizer to combat metastability:

DienO

module synch (input logic clk, reset, 1in, output logic out);
logic mid; // output of first FF, could be named anything

always_ff @(posedge clk)
if (reset)
{mid, out} <= 2'b00;
else
{mid, out} <= {in, mid};

endmodule // synch

Exercise 1b (Pulse Generator)

e We will use a finite state machine to generate pulses for rising edges of an
input signal (i.e., outputs 1 for one clock cycle each time the input goes
from low to high, no matter how long the input is held high).

o Create an FSM state diagram.

o Then create a SystemVerilog implementation in a module called pulse.

Exercise 1b (Solution)

e Generate pulses for rising edges of an input signal:

0/ GC\ @D

1/0

Exercise 1b (Solution) O

e Generate pulses for rising edges of an input S|gnal:

@3

module pulse (input logic clk, reset, in, output logic out);
enum logic {ZERO, ONE} ps, ns;
assign ns = in ? ONE : ZERO;

always_ff @(posedge clk)
ps <= reset ? ZERO : ns;

assign out = (ps == ZERO) & 1in;

endmodule // pulse

1/0

Top-Level Module Block Diagrams

Block Diagrams (Review)

e Block diagrams are the basic design tool for digital logic.
o The diagram itself is a module — inputs and outputs shown and connected.
o Major components are represented by blocks (“black boxes”) with their
internals abstracted away — each block becomes its own module.
o All ports for each block should be shown and labeled and connected to the
appropriate part(s) of the rest of the system — sets your port connections.
o Wires and gates can be added/shown as needed.

e From Wikipedia: The goal is to “[end] in block diagrams detailed enough
that each individual block can be easily implemented.”

o For designs that involve multiple modules, should always create your block
diagram before coding anything!

https://en.wikipedia.org/wiki/Block_diagram

HDL Organization

e A module is not a function, it is closest to a class.

o Something that you instantiate, not something that you call - hardware
cannot appear and disappear spontaneously.

e Treat modules as resource managers rather than temporary helpers.

o Decompose problem into the major resources and computations and build
separate modules around those.

e Hardware organization tends to be more horizontal (i.e., modules
computing things in parallel alongside each other) rather than vertical (i.e.,
a call stack with functions waiting on each other).

Top-Level Modules

Top-Level Module Notes

e The top-level module interfaces with the actual device ports
(e.g., CLOCK_50, SW, KEY, LEDR, HEX).

o We recommend putting as /ittle logic (some gates and routing elements okay)
in the top-level module to increase the portability of your code across
different devices (i.e., moving from DE1-SoC to DEO-Nano should only be
reconnecting different I/0O ports to modules).

o For readability, can also “rename” signals using assign statements
(e.g., assign clk = CLOCK_50;, assign reset = ~KEY[3];)
or use internal signal names in Wave pane in ModelSim.

Top-Level Module Implementation

1) Start with the normal module outline.

2) Generate/declare internal signals (e.g., port connections for modules).
a) Use copy-and-paste from internal module definitions to avoid typos!

3) Instantiate internal modules and make port connections.

4) Caninclude some logic but generally want to keep this to a minimum.
a) Significant logic should be abstracted into internal modules.

Top-Level Module Test Bench

e Structurally like a normal test bench:

©)

o O O O

Module skeleton.

Create signals for module you're going to test.
Instantiate device under test

Generate clock (if needed)

Define test vectors in an initial block.

Top-Level Module Test Bench

e Structurally like a normal test bench:
o Module skeleton.
Create signals for module you're going to test.
Instantiate device under test
Generate clock (if needed)
Define test vectors in an initial block.

o O O O

e Testvectors should focus on testing module interconnections:
o Test that the reset affects all of the internal modules that it should.
o Don't thoroughly test internal modules again (rely on individual test benches).
o Test connections between modules - data passing timing and reactions.

Exercise 2

e InLecture 6, we drew out the block diagram for a psychic tester, where
the user needs to correctly guess 8 consecutive 4-bit patterns to be
declared a psychic. Here, we'll look at a slightly modified version of it:

o The User Input module will use psychic
synch and pulse, making it i i e e i g i e i i -
Sequentlal |Oglc (SL) next - Generate 4—: clk
Pattern ¢ oy

|
|
|
o To abstract away hardware, :
changed KEY and SWinputsto | s a L |
|
|
|
|
|

: |
guess_ext, submit_ext. Count | correct | check |, guess User [+ guess_ext
Guesses Guess Input (e—— submit_ext
|
? submit |

I next Generate ~—
[] i Pattern 4_i_ rst
Exercise 2a | S N
I Ccoorllfgctt cccccc t Check guess User <—=— guess_ext
: Glissses Guess Input 4_:_ submit_ext
° | 4 submit [
Implement psychic_tester: O |
o Provided modules:

module
module
module
module

genPatt (clk, rst, pattern, next);

userIn (clk, rst, guess, submit, guess_ext, submit_ext);
checkGuess (pattern, guess, correct);

countRight (clk, rst, correct, submit, next, psychic);

next Generate <I— clk

Pattern - rst

pattern |
SL CcL SL |

guess guess_ext
Correct gheck ‘User <—l—
Guesses Hess nput fe—— submit_ext

e Module outline;]

Exercise 2a (Solution)

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);

input logic clk, rst, submit_ext;
input logic [3:0] guess_ext;
output logic psychic;

endmodule // psychic_tester

Exercise 2a (Solution) I R

e Generate/declare internal signals: Lo |

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);

input logic clk, rst, submit_ext;
input logic [3:0] guess_ext;
output logic psychic;

logic [3:0] pattern, guess;
logic correct, next, submit;

endmodule // psychic_tester

next Generate <I— clk

Pattern - rst

Exercise 2a (Solution) I R

correc guess guess_ext
Correct [« gheck ‘User <—l—
Guesses Hess nput fe—— submit_ext

e [nstantiate internal modules:]

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);

input logic clk, rst, submit_ext;
input logic [3:0] guess_ext;
output logic psychic;

logic [3:0] pattern, guess;
logic correct, next, submit;

genPatt pat (.clk, .rst, .pattern, .next);
userIn inp (.clk, .rst,
.guess_ext, .submit_ext, .guess, .submit);
checkGuess chk (.pattern, .guess, .correct);
countRight cnt (.clk, .rst, .correct, .submit, .next, .psychic);
endmodule // psychic_tester

|
| next Generate 4:— 1k
e ° | Pattern ¢ —
I |
ExerCIse 2a SOlutlon I pattern |
: SL CcL SL |
| Ccoorlrjgctt | correct Check guess Us <—=— guess_ex t
: Guesses Glless INpUt le—— submit_ext
|
|

e There's no logic other than the port connections! 2222222227777 . |

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);

input logic clk, rst, submit_ext;
input logic [3:0] guess_ext;
output logic psychic;

logic [3:0] pattern, guess;
logic correct, next, submit;

genPatt pat (.clk, .rst, .pattern, .next);
userIn inp (.clk, .rst,
.guess_ext, .submit_ext, .guess, .submit);
checkGuess chk (.pattern, .guess, .correct);
countRight cnt (.clk, .rst, .correct, .submit, .next, .psychic);
endmodule // psychic_tester

' |
| t Generate - T 1k
PY | Pattern - rst
' |
: sL cL sL |
C t | correc t uess <—|—I eeeeee t
: Correct gh ke g IU f 8
| Guesses R [+ submit_ext
|
| f submit | |
|

e Create a test bench for psychic_tester: "7 | |

o The “randomly” generated patterns will be:
4'bO0OO —» 4'b00O1 > 4'b00O11 - 4'b0111 —
4'b1110 -5 4'b1101 - 4'b1011 - 4'b0O110.

o Remember that it will take 2 clock cycles for the x_ext signals to go through
the synch modules in the User Input module to reach the rest of the system.

o Group brainstorm: What behaviors/situations do we want to test?

Exercise 2b

Create a test bench for psychic_tester: """ | |

o Group brainstorm: What behaviors/situations do we want to test?

m Reset behavior.

m submit should trigger a single update 2-3 clock cycles later, even when
held.
A correct guess should increment count and generate a new pattern.

m Anincorrect guess should reset count and generate a new pattern.
psychic going high after 8 guesses was likely tested in countRight's
test bench but could test again.

Exercise 2b (Solution)

e Module outline, signal declarations, device under test instantiation:

module psychic_tester_tb ();
logic clk, rst, submit_ext, psychic;
logic [3:0] guess_ext;

psychic_tester dut (.x*);

endmodule // psychic_tester_tb

Exercise 2b (Solution)

e C(Clock generation, skeleton for test vectors:

module psychic_tester_tb ();
// signal declarations
// dut instantiation

parameter T = 20; // clock period
initial

clk = 0;
always

#(T/2) clk <= ~clk;

initial begin
$stop;
end
endmodule // psychic_tester_tb

Exercise 2b (Solution)

e Testreset behavior.

module psychic_tester_tb ();
// signal declarations, dut instantiation, clock generation

initial begin
// test case 0: verify reset behavior
{rst, submit_ext, guess_ext} <= 6'b1_0_0000; @(posedge clk);
{rst, submit_ext, guess_ext} <= 6'b0_0_0000; @(posedge clk);
$stop;
end
endmodule // psychic_tester_tb

Exercise 2b (Solution)

e Test submit signal unenabled.

module psychic_tester_tb ();
// signal declarations, dut instantiation, clock generation

initial begin
// after reset
// test case 1: user 1inputs guesses but did not trigger submit button
// guess 1is not counted even if the guess matches the correct pattern

{submit_ext, guess_ext} <= 5'b0_0000; @(posedge clk);
{submit_ext, guess_ext} <= 5'b0_0001; @(posedge clk);
@(posedge clk);
Sstop;
end

endmodule // psychic_tester_tb

Exercise 2b (Solution)

e Test 8 correct guesses with a wrong guess in between

module psychic_tester_tb ();
// signal declarations,
initial begin
// after reset
{submit_ext, guess_ext}
submit_ext <= 1'bl;
{submit_ext, guess_ext}
submit_ext <= 1'b1l;
{submit_ext, guess_ext}
submit_ext <= 1'bl;
{submit_ext, guess_ext}
submit_ext <= 1'bl;
{submit_ext, guess_ext}
submit_ext <= 1'b1l;

$stop;
end

endmodule // psychic_tester_tb

dut instantiation, clock generation

5'b0_0000;
5'b0_0001;
5'b0_0011;
5'b0_0111;

5'bO_1111;

@(posedge
@(posedge
@(posedge
@(posedge
@(posedge
@(posedge
@(posedge
@(posedge
@(posedge
@(posedge
@(posedge

clk);
clk); //
clk);
clk); //
clk);
clk); //
clk);
clk); //
clk);

clk); //
clk);

correct (1)
correct (2)
correct (3)
correct (4)

wrong guess

Exercise 2b (Solution)

e Test psychic going high after 8 correct guesses

module psychic_tester_tb ();
// signal declarations, dut instantiation, clock generation
initial begin
// after reset
{submit_ext, guess_ext} <= 5'b0_0000; @(posedge clk);

submit_ext <= 1'bl; @(posedge clk); // correct (1)
{submit_ext, guess_ext} <= 5'b0_0001; @(posedge clk);
submit_ext <= 1'bl; @(posedge clk); // correct (2)
{submit_ext, guess_ext} <= 5'b0_0011; @(posedge clk);
submit_ext <= 1'bl; @(posedge clk); // correct (3)
{submit_ext, guess_ext} <= 5'b0_0111; @(posedge clk);
submit_ext <= 1'bl; @(posedge clk); // correct (4)
{submit_ext, guess_ext} <= 5'b0_1110; @(posedge clk);
submit_ext <= 1'bl; @(posedge clk); // correct (5)
. // continue correct guess
$stop;

end

endmodule // psychic_tester_tb

Exercise 2b (Solution)

e Test psychic going high after 8 correct guesses

module psychic_tester_tb ();
// signal declarations, dut instantiation, clock generation

initial begin
. // user already guessed correctly 5 times
{submit_ext, guess_ext} <= 5'b0_1101; @(posedge clk);

submit_ext <= 1'bl; @(posedge clk); // correct (6)
{submit_ext, guess_ext} <= 5'b0_1011; @(posedge clk);
submit_ext <= 1'bl; @(posedge clk); // correct (7)
{submit_ext, guess_ext} <= 5'b0_0110; @(posedge clk);
submit_ext <= 1'bl; @(posedge clk); // correct (8)
submit_ext <= 1'b0; @(posedge clk);

@(posedge clk);
@(posedge clk);
@(posedge clk); // psychic is HIGH
$stop;
end
endmodule // psychic_tester_tb

Exercise 2b (solution)

e Example of possible simulation

4 Jpsychic_tester_tb/ck U W TR U LTS UL U W W A LR LU L LA Al L JJUJJJ1J
4 [psychic_tester_tb/rst

4 Jpsychic_tester_th/submit_ext L | [] [[| | | Tl
44 Jpsychic_tester_tb/dut/inp/submit ‘ | '

-4 /psychic_tester_th/quess_ext (0000__J 0001 J 0000 j 0D1 J 0011 fo1i11 1111 |

4. /psychic_tester_tb/dut/inp/quess {0000 | 00DO0 _J 0001 J0011 J0111)1

¢ /psychic_tester_th/dut/chk/guess \

I I A S S S—

‘ i (0001 | I | ="
£ Jpsychic_tester_tb/dut/chk/pattern {0000 0001 0011 0111 Il JJDJ 10001 Y G011 jo111 J 1110) [1011 J0110 A |
s/psydic_m_mmt/mcmect , 1 1 e 1 8 g u u

i 12 13 & Jo 7 31 :):I::N_

/psychnc tester tb/psychvc

>
Cursorl 732 ps

14 [

Exercise 2b (solution)

e Verify reset behavior

4 Jpsychic_tester_tb/frst :
4 psychic_tester_th/submit_ext A [| | [[| | | Tl
44 Jpsychic_tester_tb/dut/inp/submit ‘ | ' . ! , . j] l

-4 /psychic_tester_tb/quess_ext (0000) 0001 J 0000) 00D1 J 0011 30111 11111 Y0000 | J001)

-4 /psychic_tester_tb/dut/inp/guess i if

¢ /psychic_tester_th/dut/chk/guess

4 Jpsychic_tester_tb/ck U U UL LTUU U UL LU LU L L LAl L JJUJJJ1J

N I N A S— S— R S S— —

£ Jpsychic_tester_tb/dut/chk/pattern
4., Jpsychic_tester_th/dut/chk/correct

a1 —\’1—\’—\’—\
W A I I !

/psychnc tester tb/psychvc

>
Cursorl 732 ps

14 [

Exercise 2b (solution)

e User inputs guesses but did not trigger submit button
e guess doesn't submit even though the guess matches the correct pattern

4 Jpsychic_tester_tb/frst
4 psychic_tester_th/submit_ext L | |
4. [psychic_tester_tb/dut/inp/submit |

-4 /psychic_tester_th/quess_ext (0000|0001)0)00)0u01 30011 (111 11111

£-“u /psychic_tester_th/dut/inp/guess 1a) 000]

B¢ /psychic_tester_tb/dut/chk/guess (11110000 [)00D1J0011) [1110 Y1101 Y1011}

4 Jpsychic_tester_tb/ck Uyuupguyuupruyuupuyuupuryuupruy o JJUJJJ1J

l | I I 1

B¢ psychic_tester_tb/dut/chk/pattern 0 »Jomuonouijnm m 0011) 0111 J 1110 J 110 0
4 /psydic_tesm'_lblmtldk/correct _ I 98 e 2 B ' e 1

121 13 1a Jo T Ys 105 6 Y7 X8|
/psychnc tester tb/psych»c

>
Cursorl 732 ps

<l [

Exercise 2b (solution)

e User guesses wrong in their 5th try
e count_correctis cleared and psychic signal should is false

4 [psychic_tester_tb/ck

4 Jpsychic_tester_tb/frst

4 psychic_tester_th/submit_ext

4. [psychic_tester_tb/dut/inp/submit
-4 /psychic_tester_tb/guess_ext
-4 /psychic_tester_tb/dut/inp/guess
¢ /psychic_tester_th/dut/chk/guess

£ /psychic_tester_tb/dut/chk/pattern : 0001 uon ,‘ 0111 _; .)JDJ 10001 [00D0 | J0001)Jdo0i1 joid1) 1110) 1101 1011) 0110 l

4 Ipsydic_tes!zr_iblmtldk/cnrrect) 1 g e 1 8 g A P (. 2

=3 :):T:J:}I_
/psychnc tester tb/psych»c

>
Cursorl 732 ps

<l [

Exercise 2b (solution)

e Reset and user guesses correctly 8 times
e psychic signal is true after 8 guesses

4 Jpsychic_tester_tb/ck WL UL A L R R B L L LR L LG LR WL A L L LA LA L 1’;
4 Jpsychic_tester_tb/frst , | | l
4 [psychic_tester_tb/submit_ext L | || | [[| | | [zt
“a. Jpsychic_tester_th/dut/inp/submit | . ! , . i

04 /psychic_tester_tb/guess_ext 0 (0000 J00D1 | ‘ (0011 J 0111)

£-“s psychic_tester_tb/dut/inp/guess

B¢ Jpsychic_tester_tb/dut/chk/guess

- /psychic_tester_tb/dut/chk/pattern {0000 0001 uon ,‘ 0111 _; 000 | 10001 [00D0 | J0001)Jdo0i1 joid1) 1110) 1101 1011) 0110 l

4 Ipsydic_tesm'_lblmtldk/correct

= v_\ {J J lg l_J
'1—\'—\ﬁ

] —
/psychnc tester tb/psych»c

>
Cursorl 732 ps

<l [

Exercise 2c

e Implement DE1_SoC to connect to hardware:

o UseSW[3:0] as guess,
~KEY[3] as rst (reset),
~KEY[0] as submit, and
LEDR[O] as psychic.

SL |
|
t Generat 1
Patt - r
|
patter |
SL CcL SL |
C t | correc t uess <—|—I
Correct gh I & IU t g
Guesses p i
|
f submit | |

I |
| next Generate <|— 1k
o ® | Pattern < —
] |
ExerCIse 2C SOlutlon I pattern |
: sL cL sL |
| CCOE#Q; correct Check guess User <—=— guess_ext
: Guesses Guess Input [¢—— submit_ext
|
|

e Wrapper module for hardware (Version 1):]

module DE1_SoC (CLOCK_50, SW, KEY, LEDR);
input logic CLOCK_50;
input logic [9:0] SW;
input logic [3:0] KEY;
output logic [9:0] LEDR;

logic clk, rst, guess_ext, submit_ext, psychic;
assign clk = CLOCK_50;

assign rst = ~KEY[3];

assign psychic = LEDR[O];

assign guess_ext = SW[3:0];

assign submit_ext = ~KEY[0O];

psychic_tester psych (.%);
endmodule // DEI1_SoC

