Section 1

CSE 369 Workflow
Administrivia

- **Pre-course survey:** Due today (3/29, [link](#)).
- **Lab kit pickups:** If you haven’t picked up a kit yet, please come to any office hours as soon as possible ([weekly calendar](#)).
- **Lab 1&2:** Report due next Wednesday (4/10) @ 2:30 pm, demo by last OH on Friday (4/12), but expected during your assigned slot.
 - Lab demo slots will be assigned on Monday (4/8).
What to expect from section

- **When:** Every Friday at 1:30 pm on Zoom (URL)
 - Recordings will be made available afterward on Panopto

- **What:** SystemVerilog is a tricky language and we don’t have much time to talk about it during lectures (only 80 min/week), so we are introducing optional sections focused on it.

- Please come and share your feedback; it is the first time we are doing this! Thanks for being our guinea pigs 😊.
369 Workflow
The Intel Quartus Software is a tool for designing, synthesizing, and programming FPGAs.

With it, you are able to (1) write SystemVerilog code, (2) compile it, and (3) program your DE1-SoC board.

More information: Quartus Tutorial

ModelSim is a simulation and debugging tool for a variety of hardware description languages, including SystemVerilog.

With it, you are able to run simulations to verify your code’s logical behavior without endangering your hardware.

This is your main tool for debugging!

More information: ModelSim Usage Guide

More on this in Lecture 2
DE1-SoC Overview

- The DE1-SoC is a development kit built around an FPGA.
 - An FPGA is a large array of logical elements with reprogrammable connections. This means we can use it to build many different kinds of hardware all on the same chip!
 - The kit also contains other functionalities that we will use in our labs.
- More information: [FPGA overview](#)

Some details on how FPGAs work will be covered Lecture 9
Installation Process
Installing Quartus and ModelSim

- If you wish to skip installation altogether, you can use the lab computers in CSE 003.

- Follow the installation tutorial on the website: [link]
 - This class only supports the Windows version of Quartus and ModelSim.
 - For MacOS, you can use a Windows virtual machine (described in the tutorial).

- Installation tips:
 - All 3 downloaded files need to be in the same directory so that ModelSim and Cyclone V options are available during Quartus installation.
 - Try not to miss the USB Blaster II driver installation option at the end.
Workflow Demo

Shortened version of the Quartus Tutorial
File Organization

- Unzip Lab1_files_Q17.zip to get started.
 - Download from the Lab 1&2 specs.
 - Can be unzipped again to start any new project or you can copy an existing project directory.
- Create subdirectories for each lab within a class directory (e.g., CSE369/lab1).
 - All project SystemVerilog files should be placed in this directory and added to Quartus project.
- Every Verilog module should have a test bench in a separate file.
 - Suggested naming scheme: new_module.sv and new_module_tb.sv for test bench.
Programming Workflow (Quartus)

- Open the Quartus project via the `.qpf` file in the project directory (double-click or find using File → Open Project...).

- In the Project Navigator “Files” tab, need to right-click and select “Set as Top-Level Entity” on the proper file/module.
 - The top-level entity should NOT be a test bench.

- When done coding a module, save the file and then run the Analysis and Synthesis tool:
 - Quartus' interface for compilation warnings and errors is better than ModelSim’s.
 - Use this tool to fix errors with syntax and signal connections before simulation.
Simulation Workflow (ModelSim)

- Double-click `Launch_ModelSim.bat` in the project directory.
- In a text editor, modify `runlab.do` for your project:
 - Add files to compile (modules + test benches).
 - Change which test bench you wish to simulate.
 - Change the waveform script file (`*_wave.do`) – this won’t exist at first.
- Execute `do runlab.do` in the Transcript pane.
 - Use waveforms to verify/debug logical behavior of your module(s).
- Update waveform script file as desired.
 - Click on different modules in the sim pane to access different signals.
 - Drag signals from the Objects pane into the Wave pane.
 - With the Wave pane selected, Ctrl+S to overwrite your waveform script file.
Hardware Workflow (Quartus)

- Make sure the board is off before connecting to the computer’s USB, then power the board on (red push button).

- In Quartus, ensure that your top-level module is set as the project’s top-level module then use the Compilation tool:
 - This typically takes a while to run (2–10 minutes).

- Use File → Open... to open the Programmer interface via ProgramTheDE1_SoC.cdf.
 - Need to change the file type to “Programming Files”:

 ![File name: Programming Files (*.cdf, *.sof)]

- Assuming no issues, click “Start” to program your DE1-SoC!