
CSE369, Spring 2024L5: Finite State Machines

Intro to Digital Design
Finite State Machines

Instructor: Justin Hsia

Teaching Assistants:

Emilio Alcantara Eujean Lee

Naoto Uemura Pedro Amarante

Wen Li

CSE369, Spring 2024L5: Finite State Machines

Relevant Course Information

❖ Quiz 1 grades should be out on Gradescope tonight

▪ Both the quiz and solutions will be added to the question bank on the course
website

❖ Lab 5 – Verilog implementation of FSMs

▪ Step up in difficulty from Labs 1-4 (worth 100 points)

▪ Bonus points for minimal logic
• Simplification through design (Verilog does the rest)

2

CSE369, Spring 2024L5: Finite State Machines

Review of Timing Terms

❖ Clock: steady square wave that synchronizes system

❖ Flip-flop: one bit of state that samples every rising edge of CLK (positive edge-
triggered)

❖ Register: several bits of state that samples on rising edge of CLK (positive edge-
triggered); often has a RESET

❖ Setup Time: when input must be stable before CLK trigger

❖ Hold Time: when input must be stable after CLK trigger

❖ CLK-to-Q Delay: how long it takes output to change from CLK trigger

3

CSE369, Spring 2024L5: Finite State Machines

SDS Timing Question (all times in ns)

❖ The circuit below has the following timing parameters

▪ 𝑡period = 20, 𝑡setup = 2

▪ 𝑡XOR = 𝑡OR = 5, 𝑡NOT = 4

▪ Input changes 1 ns after clock trigger

❖ What is the max 𝑡C2Q?

❖ If 𝑡C2Q = 3, what is the max 𝑡hold?

4

CSE369, Spring 2024L5: Finite State Machines

Outline

❖ Flip-Flop Realities

❖ Finite State Machines

❖ FSMs in Verilog

5

CSE369, Spring 2024L5: Finite State Machines

Flip-Flop Realities: Gating the Clock

❖ Delay can cause part of circuit
to get out of sync with rest

▪ More timing headaches!

▪ Adds to clock skew

❖ Hard to track non-uniform triggers

❖ NEVER GATE THE CLOCK!!!
6

Enable

Clock

C

D Flip-Flop

Clock
Enable

D Q

C

CSE369, Spring 2024L5: Finite State Machines

Flip-Flop Realities: External Inputs

❖ External inputs aren’t synchronized to the clock

▪ If not careful, can violate timing constraints

❖ What happens if input changes around clock trigger?

7

D

Clk

Q

CSE369, Spring 2024L5: Finite State Machines

Flip-Flop Realities: Metastability

❖ Metastability is the ability of a digital system to persist for an unbounded
time in an unstable equilibrium or metastable state

▪ Circuit may be unable to settle into a stable '0' or '1' logic level within the time
required for proper circuit operation

▪ Unpredictable behavior or random value

▪ https://en.wikipedia.org/wiki/Metastability_in_electronics

❖ State elements can help reject transients

▪ Longer chains = more rejection, but longer signal delay

8

https://en.wikipedia.org/wiki/Metastability_in_electronics

CSE369, Spring 2024L5: Finite State Machines

Outline

❖ Flip-Flop Realities

❖ Finite State Machines

❖ FSMs in Verilog

9

CSE369, Spring 2024L5: Finite State Machines

Finite State Machines (FSMs)

❖ A convenient way to conceptualize computation over time

▪ Function can be represented with a state transition diagram

▪ You’ve seen these before in CSE311

❖ New for CSE369: Implement FSMs in hardware as synchronous digital
systems

▪ Flip-flops/registers hold “state”

▪ Controller (state update, I/O)
implemented in combinational logic

10

. . .

CSE369, Spring 2024L5: Finite State Machines

State Diagrams

❖ An state diagram (in this class) is defined by:

▪ A set of states 𝑆 (circles)

▪ An initial state 𝑠0 (only arrow not between states)

▪ A transition function that maps from the current input and current state to the
output and the next state (arrows between states)
• Note: We cover Mealy machines here; Moore machines put outputs on states, not transitions

❖ State transitions are controlled by the clock:

▪ On each clock cycle the machine checks the inputs and generates a new state
(could be same) and new output

11

CSE369, Spring 2024L5: Finite State Machines

❖ FSM to detect 3 consecutive 1’s in the Input

Example: Buggy 3 Ones FSM

12

States: S0, S1, S2
Initial State: S0
Transitions of form:

input/output

CSE369, Spring 2024L5: Finite State Machines

Hardware Implementation of FSM

❖ Register holds a representation of the FSM’s state

▪ Must assign a unique bit pattern for each state

▪ Output is present/current state (PS/CS)

▪ Input is next state (NS)

❖ Combinational Logic implements transition function (state transitions +
output)

13

+ =

CSE369, Spring 2024L5: Finite State Machines

FSM: Combinational Logic

❖ Read off transitions into Truth Table!

▪ Inputs: Present State (PS) and Input (In)

▪ Outputs: Next State (NS) and Output (Out)

❖ Implement logic for EACH output (2 for NS, 1 for Out)

14

PS In NS Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1

CSE369, Spring 2024L5: Finite State Machines

FSM: Logic Simplification

15

PS In NS Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1
11 0 XX X
11 1 XX X

00 01 11 10

0

1

PS
In

00 01 11 10

0

1

PS
In

00 01 11 10

0

1

PS
In

CSE369, Spring 2024L5: Finite State Machines

FSM: Implementation

❖ NS1 = PS0 ⋅ In

❖ NS0 = PS1 ⋅ PS0 ⋅ In

❖ Out = PS1 ⋅ In

❖ How do we test the FSM?

▪ “Take” every transition that we care about!

16

CSE369, Spring 2024L5: Finite State Machines

State Diagram Properties

❖ For 𝑆 states, how many state bits do I use?

❖ For 𝐼 inputs, what is the maximum number of transition arrows on the
state diagram?

▪ Can sometimes combine transition arrows

▪ Can sometimes omit transitions (don’t cares)

❖ For 𝑠 state bits and 𝐼 inputs, how big is the truth table?

17

CSE369, Spring 2024L5: Finite State Machines

Vending Machine Example

❖ Vending machine description/behavior:

▪ Single coin slot for dimes and nickels

▪ Releases gumball after ≥ 10 cents deposited

▪ Gives no change

❖ State Diagram:

18

Vending
Machine

FSM

Gumball
Release

Mechanism

Coin
Sensor

N
Open

D

CLK

Reset

CSE369, Spring 2024L5: Finite State Machines

Vending Machine State Table

19

PS N D NS Open
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

00 01 11 10

0

1

PS,N
D

00 01 11 10

0

1

PS,N
D

CSE369, Spring 2024L5: Finite State Machines

Vending Machine Implementation

❖ Open = D + PS ⋅ N

❖ NS = PS ⋅ N + PS ⋅ ഥN ⋅ ഥD

20

CSE369, Spring 2024L5: Finite State Machines

Outline

❖ Flip-Flop Realities

❖ Finite State Machines

❖ FSMs in Verilog

21

CSE369, Spring 2024L5: Finite State Machines

FSMs in Verilog: Overview

❖ FSMs follow a very particular organizational structure:

❖ They can be implemented using the following design pattern:

1) Define states and state variables
2) Next state logic (ns)
3) Output logic
4) State update logic (ps)

22

CSE369, Spring 2024L5: Finite State Machines

FSMs in Verilog: Example

❖ Arbitrary 3-state FSM that outputs 1 when two consecutive 1’s are seen
on the input

▪ 2-bit state ps

▪ clk and reset inputs

▪ 1-bit input w

▪ 1-bit output out

23

S0
00

S1
01

S11
10

1/0

0/0

1/1

0/0

1/10/0

CSE369, Spring 2024L5: Finite State Machines

module simpleFSM (clk, reset, w, out);
input logic clk, reset, w;
output logic out;

endmodule // simpleFSM

FSMs in Verilog: (0) Module Outline

24

S0
00

S1
01

S11
10

1/0

0/0

1/1

0/0

1/10/0

CSE369, Spring 2024L5: Finite State Machines

module simpleFSM (clk, reset, w, out);
input logic clk, reset, w;
output logic out;

// State Encodings and variables
// (ps = Present State, ns = Next State)
enum logic [1:0] {S0=2'b00, S1=2'b01, S11=2'b10} ps, ns;

endmodule // simpleFSM

FSMs in Verilog: (1) State Declarations

25

S0
00

S1
01

S11
10

1/0

0/0

1/1

0/0

1/10/0

CSE369, Spring 2024L5: Finite State Machines

module simpleFSM (clk, reset, w, out);
... // (0) port declarations
... // (1) state encodings and variables

// Next State Logic (ns)
always_comb
case (ps)

S0: if (w) ns = S1;
else ns = S0;

S1: if (w) ns = S11;
else ns = S0;

S11: if (w) ns = S11;
else ns = S0;

endcase

endmodule // simpleFSM

FSMs in Verilog: (2) Next State Logic

26

S0
00

S1
01

S11
10

1/0

0/0

1/1

0/0

1/10/0

CSE369, Spring 2024L5: Finite State Machines

module simpleFSM (clk, reset, w, out);
... // (0) port declarations
... // (1) state encodings and variables
... // (2) Next State Logic (ns)

// Output Logic – could have been in "always" block
// or part of Next State Logic.
assign out = (ns == S11);

endmodule // simpleFSM

FSMs in Verilog: (2) Output Logic

27

S0
00

S1
01

S11
10

1/0

0/0

1/1

0/0

1/10/0

CSE369, Spring 2024L5: Finite State Machines

module simpleFSM (clk, reset, w, out);
... // (0) port declarations
... // (1) state encodings and variables
... // (2) Next State Logic (ns)
... // (3) Output Logic

// State Update Logic (ps)
always_ff @(posedge clk)
if (reset)

ps <= S0;
else

ps <= ns;

endmodule // simpleFSM

FSMs in Verilog: (2) Output Logic

28

S0
00

S1
01

S11
10

1/0

0/0

1/1

0/0

1/10/0

CSE369, Spring 2024L5: Finite State Machines

❖ NEVER mix in one always block!

❖ Each variable written in only one always block

Reminder: Blocking vs. Non-blocking

29

// Output logic
assign out = (ns == S11);

// Next State Logic (ns)
always_comb
case (ps)

S0: if (w) ns = S1;
else ns = S0;

S1: if (w) ns = S11;
else ns = S0;

S11: if (w) ns = S11;
else ns = S0;

endcase

// State Update Logic (ps)
always_ff @(posedge clk)

if (reset)
ps <= S0;

else
ps <= ns;

Non-blocking (<=) in SL:Blocking (=) in CL:

CSE369, Spring 2024L5: Finite State Machines

One or Two Blocks?

❖ We showed the state update in two separate blocks:

▪ always_comb block that calculates the next state (ns)

▪ always_ff block that defines the register (ps updates to last ns on clock trigger)

❖ Can this be done with a single block?

▪ If so, which one: always_comb or always_ff

30

CSE369, Spring 2024L5: Finite State Machines

One or Two Blocks?

always_comb
case (ps)
S0: if (w) ns = S1;

else ns = S0;
S1: if (w) ns = S11;

else ns = S0;
S11: if (w) ns = S11;

else ns = S0;
endcase

always_ff @(posedge clk)

if (reset)

ps <= S0;

else

ps <= ns;

31

always_ff @(posedge clk)

if (reset)

ps <= S0;

else

case (ps)

S0: if (w) ps <= S1;

else ps <= S0;

S1: if (w) ps <= S11;

else ps <= S0;

S11: if (w) ps <= S11;

else ps <= S0;

endcase

CSE369, Spring 2024L5: Finite State Machines

module simpleFSM_tb ();
logic clk, reset, w, out;

// instantiate device under test
simpleFSM dut (.clk, .reset, .w, .out);

// generate simulated clock
parameter CLOCK_PERIOD=100;
initial begin
clk <= 0;
forever #(CLOCK_PERIOD/2) clk <= ~clk;

end

... // generate test vectors

endmodule // simpleFSM_tb

FSMs Test Bench (1/2)

32

S0
00

S1
01

S11
10

1/0

0/0

1/1

0/0

1/10/0

CSE369, Spring 2024L5: Finite State Machines

// generate test vectors
initial begin
reset <= 1; w <= 0; @(posedge clk); // reset
reset <= 0; @(posedge clk); // 4 cycles of 0 input

@(posedge clk);
@(posedge clk);
@(posedge clk);

w <= 1; @(posedge clk);
w <= 0; @(posedge clk);
w <= 1; @(posedge clk); // 4 cycles of 1 input

@(posedge clk);
@(posedge clk);
@(posedge clk);

w <= 0; @(posedge clk);
@(posedge clk); // extra cycle

$stop; // pause the simulation
end

endmodule // simpleFSM_tb

FSMs Test Bench (2/2)

33

S0
00

S1
01

S11
10

1/0

0/0

1/1

0/0

1/10/0

CSE369, Spring 2024L5: Finite State Machines

Testbench Waveforms

34

S11
10

S0
00

S1
01

1/0

0/0

1/1

0/0

0/0

Reset

1/1

CSE369, Spring 2024L5: Finite State Machines

Summary

❖ Gating the clock and external inputs can cause timing issues and
metastability

❖ FSMs visualize state-based computations

▪ Implementations use registers for the state (PS) and combinational logic to
compute the next state and output(s)

▪ Mealy machines have outputs based on state transitions

❖ FSMs in Verilog usually have separate blocks for state updates and CL

▪ Blocking assignments in CL, non-blocking assignments in SL

▪ Testbenches need to be carefully designed to test all state transitions

35

