
Section 6
User Input and Top-Level

Modules

Administrivia
● Lab 6: Report due next Wednesday (11/13) @ 2:30 pm,

demo by last OH on Friday (11/15), but expected during your assigned
slot.
○ ⚠ This lab is a LOT harder than Lab 5 ⚠

● Lab 7: Report due 11/20, demo by last OH on 11/22.
○ Building on top of Lab 6 using building blocks; comparable in difficulty.

User Input

User Input Issues
● A major advantage of digital systems is the computational speed

(e.g., 50 MHz clock means a computation every 20 ns!)

● This can be difficult to reconcile with user inputs because humans can’t
move that quickly.
○ We can’t control when in a clock cycle our input changes. How do we avoid

metastability?
○ What if we only wanted to change an input for a clock cycle?

User Input Issues
● A major advantage of digital systems is the computational speed

(e.g., 50 MHz clock means a computation every 20 ns!)

● This can be difficult to reconcile with user inputs because humans can’t
move that quickly.
○ We can’t control when in a clock cycle our input changes. How do we avoid

metastability?
○ What if we only wanted to change an input for a clock cycle?

● Solutions:
○ Add a synchronizer (typically for all external inputs except reset).
○ Add a edge detector / pulse generator (typically for KEYs).

Exercise 1a (Synchronizer)
● We will use a 2 flip-flop synchronizer to combat metastability:

○ Implement this in a module called synch.

● A 2 flip-flop synchronizer to combat metastability:

Exercise 1a (Solution)

module synch (input logic clk, reset, in, output logic out);

 logic mid; // output of first FF, could be named anything

 always_ff @(posedge clk)
 if (reset)
 {mid, out} <= 2'b00;
 else
 {mid, out} <= {in, mid};

endmodule // synch

Exercise 1b (Pulse Generator)
● We will use a finite state machine to generate pulses for rising edges of an

input signal (i.e., outputs 1 for one clock cycle each time the input goes
from low to high, no matter how long the input is held high).

○ Create an FSM state diagram.

○ Then create a SystemVerilog implementation in a module called pulse.

Exercise 1b (Solution)
● Generate pulses for rising edges of an input signal:

0 1

1/1
1/0

0/0

0/0

● Generate pulses for rising edges of an input signal:

Exercise 1b (Solution)

module pulse (input logic clk, reset, in, output logic out);

 enum logic {ZERO, ONE} ps, ns;

 assign ns = in ? ONE : ZERO;

 always_ff @(posedge clk)
 ps <= reset ? ZERO : ns;

 assign out = (ps == ZERO) & in;

endmodule // pulse

0 1

1/1
1/0

0/0

0/0

Top-Level Module Block Diagrams

Block Diagrams (Review)
● Block diagrams are the basic design tool for digital logic.

○ The diagram itself is a module → inputs and outputs shown and connected.
○ Major components are represented by blocks (“black boxes”) with their

internals abstracted away → each block becomes its own module.
○ All ports for each block should be shown and labeled and connected to the

appropriate part(s) of the rest of the system → sets your port connections.
○ Wires and gates can be added/shown as needed.

● From Wikipedia: The goal is to “[end] in block diagrams detailed enough
that each individual block can be easily implemented.”
○ For designs that involve multiple modules, should always create your block

diagram before coding anything!

https://en.wikipedia.org/wiki/Block_diagram

HDL Organization
● A module is not a function, it is closest to a class.

○ Something that you instantiate, not something that you call – hardware
cannot appear and disappear spontaneously.

● Treat modules as resource managers rather than temporary helpers.
○ Decompose problem into the major resources and computations and build

separate modules around those.

● Hardware organization tends to be more horizontal (i.e., modules
computing things in parallel alongside each other) rather than vertical (i.e.,
a call stack with functions waiting on each other).

Top-Level Modules

Top-Level Module Notes
● The top-level module interfaces with the actual device ports

(e.g., CLOCK_50, SW, KEY, LEDR, HEX).

○ We recommend putting as little logic (some gates and routing elements okay)
in the top-level module to increase the portability of your code across
different devices (i.e., moving from DE1-SoC to DE0-Nano should only be
reconnecting different I/O ports to modules).

○ For readability, can also “rename” signals using assign statements
(e.g., assign clk = CLOCK_50;, assign reset = ~KEY[3];)
or use internal signal names in Wave pane in ModelSim.

Top-Level Module Implementation
1) Start with the normal module outline.

2) Generate/declare internal signals (e.g., port connections for modules).
a) Use copy-and-paste from internal module definitions to avoid typos!

3) Instantiate internal modules and make port connections.

4) Can include some logic but generally want to keep this to a minimum.
a) Significant logic should be abstracted into internal modules.

Top-Level Module Test Bench

● Structurally like a normal test bench:
○ Module skeleton.
○ Create signals for module you’re going to test.
○ Instantiate device under test
○ Generate clock (if needed)
○ Define test vectors in an initial block.

Top-Level Module Test Bench

● Structurally like a normal test bench:
○ Module skeleton.
○ Create signals for module you’re going to test.
○ Instantiate device under test
○ Generate clock (if needed)
○ Define test vectors in an initial block.

● Test vectors should focus on testing module interconnections:
○ Test that the reset affects all of the internal modules that it should.
○ Don’t thoroughly test internal modules again (rely on individual test benches).
○ Test connections between modules – data passing timing and reactions.

Exercise 2
● In Lecture 6, we drew out the block diagram for a psychic tester, where

the user needs to correctly guess 8 consecutive 4-bit patterns to be
declared a psychic. Here, we’ll look at a slightly modified version of it:

○ The User Input module will use
synch and pulse, making it
sequential logic (SL).

○ To abstract away hardware,
changed KEY and SW inputs to
guess_ext, submit_ext.

● Implement psychic_tester:

○ Provided modules:
module genPatt (clk, rst, pattern, next);
module userIn (clk, rst, guess, submit, guess_ext, submit_ext);
module checkGuess (pattern, guess, correct);
module countRight (clk, rst, correct, submit, next, psychic);

Exercise 2a

● Module outline:

Exercise 2a (Solution)

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);
 input logic clk, rst, submit_ext;
 input logic [3:0] guess_ext;
 output logic psychic;

endmodule // psychic_tester

● Generate/declare internal signals:

Exercise 2a (Solution)

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);
 input logic clk, rst, submit_ext;
 input logic [3:0] guess_ext;
 output logic psychic;

 logic [3:0] pattern, guess;
 logic correct, next, submit;

endmodule // psychic_tester

● Instantiate internal modules:

Exercise 2a (Solution)

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);
 input logic clk, rst, submit_ext;
 input logic [3:0] guess_ext;
 output logic psychic;

 logic [3:0] pattern, guess;
 logic correct, next, submit;

 genPatt pat (.clk, .rst, .pattern, .next);
 userIn inp (.clk, .rst,
 .guess_ext, .submit_ext, .guess, .submit);
 checkGuess chk (.pattern, .guess, .correct);
 countRight cnt (.clk, .rst, .correct, .submit, .next, .psychic);
endmodule // psychic_tester

● There’s no logic other than the port connections!

Exercise 2a (Solution)

module psychic_tester (clk, rst, guess_ext, submit_ext, psychic);
 input logic clk, rst, submit_ext;
 input logic [3:0] guess_ext;
 output logic psychic;

 logic [3:0] pattern, guess;
 logic correct, next, submit;

 genPatt pat (.clk, .rst, .pattern, .next);
 userIn inp (.clk, .rst,
 .guess_ext, .submit_ext, .guess, .submit);
 checkGuess chk (.pattern, .guess, .correct);
 countRight cnt (.clk, .rst, .correct, .submit, .next, .psychic);
endmodule // psychic_tester

● Create a test bench for psychic_tester:

○ The “randomly” generated patterns will be:
4'b0000 → 4'b0001 → 4'b0011 → 4'b0111 →
4'b1110 → 4'b1101 → 4'b1011 → 4'b0110.

○ Remember that it will take 2 clock cycles for the *_ext signals to go through
the synch modules in the User Input module to reach the rest of the system.

○ Group brainstorm: What behaviors/situations do we want to test?

Exercise 2b

● Create a test bench for psychic_tester:

○ Group brainstorm: What behaviors/situations do we want to test?
■ Reset behavior.
■ submit should trigger a single update 2-3 clock cycles later, even when

held.
■ A correct guess should increment count and generate a new pattern.
■ An incorrect guess should reset count and generate a new pattern.
■ psychic going high after 8 guesses was likely tested in countRight’s

test bench but could test again.

Exercise 2b

● Module outline, signal declarations, device under test instantiation:

Exercise 2b (Solution)

module psychic_tester_tb ();
 logic clk, rst, submit_ext, psychic;
 logic [3:0] guess_ext;

 psychic_tester dut (.*);

endmodule // psychic_tester_tb

● Clock generation, skeleton for test vectors:

Exercise 2b (Solution)

module psychic_tester_tb ();
 ... // signal declarations
 ... // dut instantiation

 parameter T = 20; // clock period
 initial
 clk = 0;
 always
 #(T/2) clk <= ~clk;

 initial begin
 $stop;
 end
endmodule // psychic_tester_tb

● Test reset behavior.

Exercise 2b (Solution)

module psychic_tester_tb ();
 ... // signal declarations, dut instantiation, clock generation

 initial begin
 // test case 0: verify reset behavior
 {rst, submit_ext, guess_ext} <= 6'b1_0_0000; @(posedge clk);
 {rst, submit_ext, guess_ext} <= 6'b0_0_0000; @(posedge clk);
 $stop;
 end
endmodule // psychic_tester_tb

● Test submit signal unenabled.

Exercise 2b (Solution)

module psychic_tester_tb ();
 ... // signal declarations, dut instantiation, clock generation

 initial begin
 ... // after reset
 // test case 1: user inputs guesses but did not trigger submit button
 // guess is not counted even if the guess matches the correct pattern
 {submit_ext, guess_ext} <= 5'b0_0000; @(posedge clk);
 {submit_ext, guess_ext} <= 5'b0_0001; @(posedge clk);
 @(posedge clk);
 $stop;
 end
endmodule // psychic_tester_tb

● Test 8 correct guesses with a wrong guess in between

Exercise 2b (Solution)

module psychic_tester_tb ();
 ... // signal declarations, dut instantiation, clock generation
 initial begin
 ... // after reset
 {submit_ext, guess_ext} <= 5'b0_0000; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // correct (1)
 {submit_ext, guess_ext} <= 5'b0_0001; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // correct (2)
 {submit_ext, guess_ext} <= 5'b0_0011; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // correct (3)
 {submit_ext, guess_ext} <= 5'b0_0111; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // correct (4)
 {submit_ext, guess_ext} <= 5'b0_1111; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // wrong guess
 @(posedge clk);
 $stop;
 end
endmodule // psychic_tester_tb

● Test psychic going high after 8 correct guesses

Exercise 2b (Solution)

module psychic_tester_tb ();
 ... // signal declarations, dut instantiation, clock generation
 initial begin
 ... // after reset
 {submit_ext, guess_ext} <= 5'b0_0000; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // correct (1)
 {submit_ext, guess_ext} <= 5'b0_0001; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // correct (2)
 {submit_ext, guess_ext} <= 5'b0_0011; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // correct (3)
 {submit_ext, guess_ext} <= 5'b0_0111; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // correct (4)
 {submit_ext, guess_ext} <= 5'b0_1110; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // correct (5)

... // continue correct guess
 $stop;
 end
endmodule // psychic_tester_tb

● Test psychic going high after 8 correct guesses

Exercise 2b (Solution)

module psychic_tester_tb ();
 ... // signal declarations, dut instantiation, clock generation

 initial begin
 ... // user already guessed correctly 5 times
 {submit_ext, guess_ext} <= 5'b0_1101; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // correct (6)
 {submit_ext, guess_ext} <= 5'b0_1011; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // correct (7)
 {submit_ext, guess_ext} <= 5'b0_0110; @(posedge clk);
 submit_ext <= 1'b1; @(posedge clk); // correct (8)
 submit_ext <= 1'b0; @(posedge clk);
 @(posedge clk);
 @(posedge clk);

 @(posedge clk); // psychic is HIGH
 $stop;
 end
endmodule // psychic_tester_tb

● Example of possible simulation

Exercise 2b (solution)

● Verify reset behavior

Exercise 2b (solution)

● User inputs guesses but did not trigger submit button
● guess doesn’t submit even though the guess matches the correct pattern

Exercise 2b (solution)

● User guesses wrong in their 5th try
● count_correct is cleared and psychic signal should is false

Exercise 2b (solution)

● Reset and user guesses correctly 8 times
● psychic signal is true after 8 guesses

Exercise 2b (solution)

● Implement DE1_SoC to connect to hardware:

○ Use SW[3:0] as guess,
~KEY[3] as rst (reset),
~KEY[0] as submit, and
LEDR[0] as psychic.

Exercise 2c

● Wrapper module for hardware (Version 1):

Exercise 2c (Solution)

module DE1_SoC (CLOCK_50, SW, KEY, LEDR);
 input logic CLOCK_50;
 input logic [9:0] SW;
 input logic [3:0] KEY;
 output logic [9:0] LEDR;

 logic clk, rst, guess_ext, submit_ext, psychic;
 assign clk = CLOCK_50;
 assign rst = ~KEY[3];
 assign psychic = LEDR[0];
 assign guess_ext = SW[3:0];
 assign submit_ext = ~KEY[0];

 psychic_tester psych (.*);
endmodule // DE1_SoC

guesscorrect

Generate
Pattern

Check
Guess User Input

Count
Correct
Guesses

pattern

submit

psychic

next

SL

SL

SLCL

clk

rst

guess_ext

submit_ext

