Section 5

Finite State Machines

Administrivia

e Lab 5: Report due next Wednesday (11/06) @ 2:30 pm,

demo by last OH on Friday (11/8), but expected during your assigned slot.
o /\ This lab is harder than previous labs A\

e Lab 6: Reportdue 11/13, demo by lastOH on 11/15. =" .
o A\ Thislabis a LOT harder than Lab 5 A\

New SystemVerilog Commands

New SystemVerilog Commands

e enum - create an enumerated type with a restricted set of named values.
o Basicusage: enum <original type> {<name_list>} <vars>;
o <original type> must be wide enough to support the length of
<name_Tlist>; if omitted, defaults to int type.
o By default, names in the <name_1l1ist> are assigned consecutive values
starting from 0.
m Can explicitly assign values using name=<value> syntax.

New SystemVerilog Commands

e enum - create an enumerated type with a restricted set of named values.
o Basicusage: enum <original type> {<name_list>} <vars>;
o <original type> must be wide enough to support the length of
<name_Tlist>; if omitted, defaults to int type.
o By default, names in the <name_1l1ist> are assigned consecutive values
starting from 0.
m Can explicitly assign values using name=<value> syntax.

e Example: enum logic [1:0] {SO®, S1, S11=2'bll} ps, ns;
o SO assigned 2'b00, S1 assigned 2'b01.
o Two variables declared that can only take on the values S0, S1, and S11 (no
2'b10).

New SystemVerilog Commands

e Ternary operator - shorthand for an i f-else statement using the syntax
<cond> ? <then> : <else> (same syntax as C).
o Same syntax as C/C++.
o Never necessary to use, just results in more compact code.
o Very useful in combinational logic for next state and output logic.

New SystemVerilog Commands

e Ternary operator - shorthand for an i f-else statement using the syntax
<cond> ? <then> : <else> (same syntax as C).
o Same syntax as C/C++.
o Never necessary to use, just results in more compact code.
o Very useful in combinational logic for next state and output logic.

e Examples:
o case (ps)
SO: ns =w ? S1 : SO;
S1: ns = w ? S11 : SO;
S11: ns = w ? S11 : SO;
endcase
o assign HEXO = SW[O] ? leds : 7'b1111111;

Finite State Machine Implementation

FSM Implementation Notes

e The state diagram design is by far the most important part! The

SystemVerilog implementation process is fairly mechanical.
o Best to implement from scratch rather than tweak a broken initial design.

FSM Implementation Notes

e The state diagram design is by far the most important part! The

SystemVerilog implementation process is fairly mechanical.
o Best to implement from scratch rather than tweak a broken initial design.

e Module design notes: zupT
o Must have a clock input (e.g., clk, clock,
CLOCK_50) for sequential elements. -
o Should have a reset input (e.g., rst, reset) for _
“initialization.” s ouTrIl
o Must have a present state (ps); recommended E‘;_%E‘Cm
to also have a next state (ns). L_Pfj,

FSM Design Pattern

1) // State Encodings and Variables
a) enum to define ps and ns

2) // Next State Logic (ns)
a) always_comb or assign with blocking assignments (=)

3) // Output Logic
a) assignoralways_comb with blocking assignments (=)
b) Mealy-type output example: assign out = (ps == S1) & 1in;

4) // State Update Logic (ps) - including reset
a) always_ff with non-blocking assignments (<=)

Exercise 1

The following FSM represents a Red Light, Green Light game, where a
player is only allowed to move forward (M=1) when the light is green (L=1).

Here, the player wins (output W=1) after successfully moving twice; moving
when the light is red (L=0) results in returning to the start

L+M/0<\/ LM/0
M () ’Q QDM
M/0

LM/O

o Implement this system in a module called light_game.

LM/0

Exercise 1 (Solution) .. ”“@ G, ‘QM
w

LM/0
e Module outline

module light_game (input logic clk, reset, M, L, output logic W);

endmodule // light_game

L+ 1\71/0 LM/1

Exercise 1 (Solution) R/\/\,. ‘Q ‘DMH
R

LM/0
e State encodings and variables

module light_game (input logic clk, reset, M, L, output logic W);

enum logic [1:0] {Start, Mid, Win} ps, ns;

endmodule // light_game

E4—M/0<j\w ~TIM0 N vy N

Exercise 1 (Solution) ..M\ (ig) j/ (%) Do
Eh::::::::_____jffl//M/O

LM/0
e Next state logic

module light_game (input logic clk, reset, M, L, output logic W);
enum logic [1:0] {Start, Mid, Win} ps, ns;
always_comb

case (ps)
Start: ns = (L & M) ? Mid : Start;

Mid: ns = (L &M) ? Win : (M ? Start : Mid);
Win: ns = M ? Start : Win;
endcase

endmodule // light_game

E4—M/0<:\V ~IM/0 N

<D,
Exercise 1 (Solution) —O Q D”“
Fi:::::::::_____jfigz/ﬂw/0

LM/0
e Output logic

module light_game (input logic clk, reset, M, L, output logic W);
enum logic [1:0] {Start, Mid, Win} ps, ns;

always_comb

case (ps)
Start: ns = (L & M) ? Mid : Start;
Mid: ns = (L &M) ? Win : (M ? Start : Mid);
Win: ns = M ? Start : Win;

endcase

assign W = (ns == Win); // alt: ((ps == Mid) & L & M) |
// ((ps == Win) & ~M)
endmodule // light_game

E4—M/0<j\w ~IM/0 N

<D,
Exercise 1 (Solution) —O Q D”“
wwo

LM/0
e State update logic

module light_game (input logic clk, reset, M, L, output logic W);
enum logic [1:0] {Start, Mid, Win} ps, ns;

// next state logic
// output logic

always_ff @(posedge clk)

if (reset)

ps <= Start;
else

ps <= ns;

endmodule // light_game

Exercise 2

e Below is an FSM for a modified vending machine with increased cost of
15¢ for gumballs that also accepting quarters (Q: 25¢); it still does not give
change and can only take one coin at a time.

NDQ/0

NﬁQ/lC\/ m
@) (‘ () war

NDQ/0 NDQ + NDQ/1 NDQ/0

Reset

NDQ + NDQ + NDQ/1

o Implement this system in a module called vend15.

Exercise 2 (Solution)

e Module outline

NDQ/0

ND NDQ/0 NDQ/0
NDQ/1<\/ /E/N /—Q/N
88 ‘®: NDQ/0
—

NDQ + NDQ/1 _ NDQ/0

NDQ + NDQ + NDQ/1

module vendl5 (input logic

endmodule

// vendl5

clk, reset,

N, D, Q, output logic Open);

NDQ/0

Exercise 2 (Solution) s OOl

NDQ + NDQ/1 _ NDQ/0

e State encodings and variables NDQ + NDQ + NBQ/1

module vendl5 (input logic clk, reset, N, D, Q, output logic Open);
enum logic [1:0] {Zero, Five=2'bl0O, Ten=2'bll} ps, ns;

endmodule // vendl5

Exercise 2 (Solution)

NDQ/0

NEQ/1<-\/ NDQ/0 NDQ/O
) (8 @D

NDQ/0 NDQ + NDQ/l NDQ/O
e Next state logic SOOI R0 - NBGA
module vendl5 (input logic clk, reset, N, D, Q, output logic Open);
enum logic [1:0] {Zero, Five=2'bl0O, Ten=2'bll} ps, ns;
always_comb
case (ps)
Zero: case ({N, D, Q})
3'b000: ns = Zero;
3'b100: ns = Five;
3'b010: ns = Ten;
3'b001l: ns = Zero;
default: ns = ps;
endcase
// Five and Ten defined similarly
endcase
endmodule // vendl5

NDQ/0

Exercise 2 (Solution) s OOl

NDQ + NDQ/1 _ NDQ/0

e Output logic NDQ + NDQ + NDQ/1

module vendl5 (input logic clk, reset, N, D, Q, output logic Open);
enum logic [1:0] {Zero, Five=2'bl0O, Ten=2'bll} ps, ns;

// next state logic

assign Open = Q | ((ps != Zero) & D) | ((ps == Ten) & N);

endmodule // vendl5

NDQ/0

Exercise 2 (Solution) s OOl

NDQ + NDQ/1 _ NDQ/0

e State update logic NDQ + NDQ + NDQ/1

module vendl5 (input logic clk, reset, N, D, Q, output logic Open);
enum logic [1:0] {Zero, Five=2'bl0O, Ten=2'bll} ps, ns;

// next state logic
assign Open = Q | ((ps != Zero) & D) | ((ps == Ten) & N);

always_ff @(posedge clk)

if (reset)

ps <= Zero;
else

ps <= ns;

endmodule // vendl5

Finite State Machine Testing

FSM Test Bench Notes

e All notes about sequential test benches from last week still apply!
o Generate a simulated clock (don't use clock_divider), start with a reset and

define all inputs at t=0, add extra delay at end to see the effects of your last
input changes.

e To thoroughly test your FSM, need to take every transition that we care
about (can omit/ignore don't cares).

e Recommended test bench linesin initial block:
<input changes> @(posedge clk); // current state: 777

e In ModelSim, you should at least add ps to waveforms .
o Could also include ns or other signals involved in ps/ns computations.

FSM Test Bench Example e M (32 ‘ ‘ ‘Q ?
o0~

// generate test vectors
initial begin
reset <= 1; w <= 0; @(posedge clk); // reset
reset <= 0; @(posedge clk); // curr state: SO

$stop; // pause the simulation
end

FSM Test Bench Example e M (32 ‘ ‘ ‘Q ?
o0~

// generate test vectors
initial begin
reset <= 1; w <= 0; @(posedge clk); // reset
reset <= 0; @(posedge clk); // curr state: SO
w <= 1; @(posedge clk); // curr state: SO
w <= 0; @(posedge clk); // curr state: S1I
w <= 1; @(posedge clk); // curr state: SO
@(posedge clk); // curr state: S1I
@(posedge clk); // curr state: S11
@(posedge clk); // curr state: S11
w <= 0; @(posedge clk); // curr state: S11
@(posedge clk); // curr state: SO (extra cycle)
$stop; // pause the simulation
end

Exercise 3

e (reate atest bench for vend15 and simulate it in ModelSim.

o What's the minimum number of clock cycles required to thoroughly test it?

Exercise 3 (Solution)

e Create module, declare port connections, instantiate dut.

module vendl5_tb ();
logic clk, reset, N, D, Q, Open;

vendl5 dut (.x*);

endmodule // vendl5_tb

Exercise 3 (Solution)

e Setup clock.

module vendl5_tb ();
// signal declarations and dut instantiation

parameter T = 100;
initial
clk = 1'b0;
always begin
#(T/2) clk <= 1'b0o;
#(T/2) clk <= 1'bl;
end

endmodule // vendl5_tb

Exercise 3 (Solution)

e Defineinitial block and add $stop system task.

module vendl5_tb ();
// signal declarations and dut instantiation
// clock generation

initial begin

$stop;
end

endmodule // vendl5_tb

Exercise 3 (Solution)

e Start with a reset and initialize all inputs.

module vendl5_tb ();
// signal declarations and dut instantiation
// clock generation

initial begin
{reset,N,D,Q} <= 4'b1000; @(posedge clk); // reset

$stop;
end

endmodule // vendl5_tb

Exercise 3 (Solution)

e Map out a sequence of inputs that would allow us to test every transition.

NDQ/0

& 1B B

NDQ + NDQ/1 NDQ/0

NDQ + NDQ + NDQ/1

Exercise 3 (Solution)

e Map out a sequence of inputs that would allow us to test every transition.
o This is just one of many possibilities!
NDQ/0
~11,13,15_>
NDQ/1 5 NDQ/0 NDQ/0
C\/ e o™ o ™
0¢

NDQ + NDQ + NDQ/1
14 12 10

NDQ/0

11,13,15
NDQ/O NDQ/O

@
358
&) (8 @pm

NDQ NDQ/l NDQ/O

Exercise 3 (Solution)

NDQ + NDQ + NDQ/1

e Add the transitions we mapped out. 1210

module vendl5_tb ();
// signal declarations, dut instantiation, clock generation
initial begin

{reset,N,D,Q} <= 4'b1000; @(posedge clk); // reset

{reset,N,D,Q} <= 4'b0000; @(posedge clk); // Zero (1)
{N,D,Q} <= 3'b001; @(posedge clk); // Zero (2)
{N,D,Q} <= 3'b100; @(posedge clk); // Zero (3)
{N,D,Q} <= 3'b001l; @(posedge clk); // Five (4)
{N,D,Q} <= 3'b100; @(posedge clk); // Zero (5)
{N,D,Q} <= 3'b000; @(posedge clk); // Five (6)
{N,D,Q} <= 3'b010; @(posedge clk); // Five (7)
{N,D,Q} <= 3'b100; @(posedge clk); // Zero (8)

@(posedge clk); // Five (9)
// continued on next slide

Exercise 3 (Solution)

e Add the transitions we mapped out.

// signal declarations, dut instantiation, clock generation
initial begin
// previous clock cycles
{N,D,Q} <= 3'b001; @(posedge clk); // Ten (10)
{N,D,Q} <= 3'b010; @(posedge clk); // Zero (11)
@(posedge clk); // Ten (12)
@(posedge clk); // Zero (13)

{N,D,Q} <= 3'b100; @(posedge clk); // Ten (14)
{N,D,Q} <= 3'b010; @(posedge clk); // Zero (15)
{N,D,Q} <= 3'b000; @(posedge clk); // Ten (16)
@(posedge clk); // extra
$stop;

end
endmodule // vendl5_tb

Exercise 5 (Solution)

e Simulation results should verify that (1) reset works, (2) the transition
between states as expected, and (3) our output matches what we expect.

=y - R —
|Five lTen |Zero Ten J Zero ! en \LEFO iTen
Ten |Zero)Ten JZero J)Ten Ten

4
4
4
4
4
4
4
4

Cursor 1 100 ps

Exercise 5 (Solution)

e Step 1 - Verify the reset behavior.

module vendl5_tb ();
module VendlS (. * .) ... // signal declarations, dut instantiation, clock generation
o oo initial begin
{reset,N,D,Q} <= 4'b1000; @(posedge clk); // reset
a-l'WayS—-F-F @(posedge {reset,N,D,Q} <= 4'b0000; @(posedge clk); // Zero (1)
clk) ...
if (reset)
ps <= Zero; \ Jvend15_tbidk Io
Jvend15_# freset 1
€ -L S€ Jvend15_tb/N 0
ps <= ns; JVéngas_t |0
Jvend15_tb/Q
c e /vend15_tb/dutfps
endmodule // vendl5 Ivend15_thjdutins
fvend15_tb/Open

4
4
4
4
4
4
4
4

Exercise 5 (Solution)

e Step 2 - Verifying every ERETESR
.. {reset,N,D,Q} <= 4'b1000; @(posedge clk); |// reset
tranSItIOﬂ between StateS {reset,N,D,Q} <= 4'b0000; @(posedge clk); |// Zero (1)
{N,D,Q} <= 3'b001l; @(posedge clk); |// Zero (2)
as expected' {N,D,Q} <= 3'b100; @(posedge clk); |// Zero (3)
{N,D,Q} <= 3'b001l; @(posedge clk); |// Five (4)
{N,D,Q} <= 3'b100; @(posedge clk); |// Zero (5)
{N,D,Q} <= 3'b000; @(posedge clk); |// Five (6)
{N,D,Q} <= 3'b010; @(posedge clk); |// Five (7)
{N,D,Q} <= 3'b100; @(posedge clk); |// Zero (8)

@(posedge clk); |// Five (9)
{N,D,Q} <= 3'b001l; @(posedge clk); |// Ten (10)
{N,D,Q} <= 3'b010; @(posedge clk); |// Zero (11)
@(posedge clk); |// Ten (12)
@(posedge Zero (13)

N,D, = 3'b100; osedge Ten 14

fvend15_tb/dk %N,D,g% = 3'b010; gggosedge Zero §15§
Jvend15_tbfreset , {N,D,Q} <= 3'b000; @(posedge Ten (16)
Jvend15_tb/N @(posedge extra
Jvend15_tb/D
Jvend15_tb/Q !
Jvend15_tb/du tfps 0 | ive | ve | Five | Ten ro_JTen) Zero lTen JZero lTen

Jvend15_tb/duyns Zero | jrive | Zero jrive | | LErO [len j/zero) lel jlen jzero) len
Jvend15_tb/Open

Exercise 5 (Solution)

ol ol ol ol ol

NDQ/0

. ND NDQ/0 NDQ/0
Transitions that Q/lé\/ /_Q/N /_/N
0¢

should output 1: Reset

Step 3 - Verifying our output matches what we expect.

(=

NDQ + NDQ + NDQ/1
4 12 10

Zero | Ten |2
Zero mh J Lcro Tcn Lcro mﬂ:r

: -
assign Open = Q | ((ps != Zero) & D) | ((ps ==

y
Ten) & N);

