
Section 3
Test Benches

Administrivia

● Lab 3: Report due next Wednesday (10/23) @ 2:30 pm,

demo by last OH on Friday (10/25), but expected during your assigned

slot.

● Lab 4: Report due 10/30, demo by last OH on 11/1

New SystemVerilog Commands

● always_comb – higher-level description of more complex combinational

behavior.

○ Used to combine multiple assignment statements or express more situational

assignments.

● case/endcase – describe desired behavior situationally (based on value

of expression)
○ Like a switch statement in other languages, but no fall-through and no break.

○ Use default to cover remaining cases.

● Use begin and end to group multiple statements together.
○ Like { and } in other languages.

○ e.g., to put multiple statements in one always_comb or for one case

Test Benches

Writing a Test Bench

1) Start with the module skeleton (module / endmodule).
a) Please use the naming convention of <module_name>_tb

2) Create signals for all ports of the module you’re going to test.
a) Suggested to copy-and-paste from module definition, but remove port types

(i.e., input, output).

3) Instantiate device under test (dut as instance name)
a) Port connections: .<port>(<signal>) but names match can do .<port> as

shorthand, or .* if all signal names match port names.

4) Define test vectors in an initial block.

a) Needs to end with $stop; system task for ModelSim to pause.

Test Vectors for Combinational Logic

● Output of combinational logic is determined by current value of inputs.
○ Need to run through all possible input combinations in simulation to

thoroughly test.

Test Vectors for Combinational Logic

● Output of combinational logic is determined by current value of inputs.
○ Need to run through all possible input combinations in simulation to

thoroughly test.

● In order to have output values be visible in simulation, need to add

arbitrary time delays #<num>; (e.g., #10;) in-between input changes.

○ Note that our ModelSim setup has all combinational logic delays set to 0.

Test Vectors for Combinational Logic

● Output of combinational logic is determined by current value of inputs.
○ Need to run through all possible input combinations in simulation to

thoroughly test.

● In order to have output values be visible in simulation, need to add

arbitrary time delays #<num>; (e.g., #10;) in-between input changes.

○ Note that our ModelSim setup has all combinational logic delays set to 0.

● Can use “for-loop” to run through all input combinations:

for (int i; i < 8; i++) begin

// set inputs based on i, then time delay

end
○ No sequential execution just condenses your code.

● Write a test bench for the provided seg7 module from Lecture 3.
○ Be thorough, including all 16 input combinations!

Exercise 1

module seg7 (bcd, leds);
input logic [3:0] bcd;
output logic [6:0] leds;

always_comb
case (bcd)
// Light: 6543210
4'b0000: leds = 7'b0111111; // 0
... // implementation
4'b1001: leds = 7'b1101111; // 9
default: leds = 7'bX;

endcase
endmodule // seg7

● First we declare our simulated port connections.
○ Can copy-and-paste port declarations and remove input/output.

module seg7_tb ();
logic [3:0] bcd;
logic [6:0] leds;

endmodule // seg7_tb

Exercise 1 (Solution)

● Instantiate device under test.

module seg7_tb ();
logic [3:0] bcd;
logic [6:0] leds;

seg7 dut (.bcd(bcd), .leds(leds));

endmodule // seg7_tb

Exercise 1 (Solution)

● Instantiate device under test.
○ Alternatively, can use .* since our signals match the port names.

module seg7_tb ();
logic [3:0] bcd;
logic [6:0] leds;

seg7 dut (.*);

endmodule // seg7_tb

Exercise 1 (Solution)

● Define initial block and add $stop system task.

module seg7_tb ();
logic [3:0] bcd;
logic [6:0] leds;

seg7 dut (.*);

int i;
initial begin

$stop;
end

endmodule // seg7_tb

Exercise 1 (Solution)

● Test all possible combinations of inputs.

module seg7_tb ();
... // signal declarations & dut instantiation

int i;
initial begin
for (i = 0; i < 16; i++) begin
bcd = i; #20;

end
$stop;

end

endmodule // seg7_tb

Exercise 1 (Solution)

Exercise 2

● Write a test bench for the guessing_game module from Section 2.
○ Be thorough: how many input combinations are there?

// Game to check user's 3-bit input guess against a hard-coded
secret #
// - SW[2:0] is the guess, KEY[0] is check
// - LEDR[0] is <, LEDR[1] is ==, LEDR[2] is >
module guessing_game (
output logic [9:0] LEDR,
input logic [3:0] KEY,
input logic [9:0] SW

);

... // implementation

endmodule // guessing_game

Exercise 2 (Solution)

● First we declare our simulated port connections.
○ Can copy-and-paste port declarations and remove input/output.

module guessing_game_tb ();
logic [9:0] LEDR;
logic [3:0] KEY;
logic [9:0] SW;

endmodule // guessing_game_tb

Exercise 2 (Solution)

● Instantiate device under test.

module guessing_game_tb ();
logic [9:0] LEDR;
logic [3:0] KEY;
logic [9:0] SW;

guessing_game dut (
.LEDR(LEDR),
.KEY(KEY),
.SW(SW)

);

endmodule // guessing_game_tb

Exercise 2 (Solution)

● Instantiate device under test.
○ Alternatively, can use .* since our signals match the port names

module guessing_game_tb ();
logic [9:0] LEDR;
logic [3:0] KEY;
logic [9:0] SW;

guessing_game dut (.*);

endmodule // guessing_game_tb

Exercise 2 (Solution)

● Define initial block and add $stop system task.

module guessing_game_tb ();
logic [9:0] LEDR;
logic [3:0] KEY;
logic [9:0] SW;

guessing_game dut (.*);

initial begin

$stop;
end

endmodule // guessing_game_tb

Exercise 2 (Solution)

● Test all possible combinations of inputs.

module guessing_game_tb ();
... // signal declarations & dut instantiation

initial begin
KEY[0] = 1'b1; #10; // KEYs are active low

for (int i = 0; i < 8; i++) begin
SW[2:0] = i; KEY[0] = 1'b0; #10; // LEDs should light up

KEY[0] = 1'b1; #10; // LEDs should be disabled
end
$stop;

end
endmodule // guessing_game_tb

ModelSim Tips & Tricks

Simulation Workflow (Review)

● Double-click Launch_ModelSim.bat in the project directory.

● In a text editor, modify runlab.do for your project:

○ Add files to compile (modules + test benches).

○ Change which test bench you wish to simulate.

○ Change the waveform script file (*_wave.do) – this won’t exist at first.

● Execute do runlab.do in the Transcript pane.
○ Use waveforms to verify/debug logical behavior of your module(s).

● Update waveform script file as desired.
○ Click on different modules in the sim pane to access different signals.

○ Drag signals from the Objects pane into the Wave pane.

○ With the Wave pane selected, Ctrl+S to overwrite your waveform script file.

Zoom Tools

● Zoom tools allow you to

adjust the amount of the

simulation you can view at

once as well as the visibility

of the signal values.

○ Critical for generating

understandable

screenshots for your lab

reports!

Zoom Tools

● Zoom in/Zoom out
○ Allows you to change the amount of information shown at once (e.g., 200 ps at

a time, 1000 ps at a time).

● Zoom Full
○ Automatically zooms to show the whole simulation at once.

○ Good for short simulations, not great for longer simulations.

● Zoom In on Active Cursor
○ Zooms in based on the location of the yellow cursor.

Signal Radix

● Right-click a signal in the Wave pane and use

the “Radix” menu to change the display of a

signal’s value
○ This does NOT change the actual bits, just how

we interpret them!!!

○ Common choices: Binary (default), Unsigned,

Decimal (i.e., signed integer), Hexadecimal

Exercise 3

● Run your guessing_game simulation in ModelSim and use it to identify a

few input combinations that produce the wrong outputs for signed integer

interpretation.
○ Tools we just covered: zoom tools and signal radix.

● By dragging the relevant signals from the Objects window to our Wave
window, we get the following waveform:

Exercise 3 (Solution)

● Let’s make the waveform more interpretable!
○ Since we are interpreting the switch signals as signed numbers, we should

change the radix to be Decimal.

Exercise 3 (Solution)

Internal Signals

● ModelSim lets you add internal signals from any instantiated module to

your simulation!
○ Incredibly useful to trace buggy or unexpected values to their source.

○ Click [+] next to an instance name to reveal submodules (by instance name).

○ Click the instance name to access different internal signals in the Objects

pane:

● Our secret num is 1 but our system reports that -4 is greater…?
○ LEDR[2:0] = { is_gt&~KEY[0], is_eq&~KEY[0], is_lt&~KEY[0] };

Exercise 3 (Debugging)

● Let’s investigate further:
○ We know that is_gt is an output of the comparator module (instantiated

within dut as number_comparator).
○ Can add sub signal from within the comparator module to the waveform!

● Let’s investigate further:
○ We know that is_greater_than is an output of the comparator module

(instantiated within dut).
○ Can add sub signal from within the comparator module to the waveform!

● -4-1 is returning 3'b011 (-5 can’t be represented in 3 bits), so the outputs
produce unexpected values!

Exercise 3 (Debugging)

Lab Reports

Simulations for Lab Reports

● You are using simulations to communicate something to the reader.
○ Usually, “proving” correct behavior of your circuit/system.

○ Difficult to interpret on their own, so accompanying explanation is critical.

○ Useful both to the grader and to you looking back on this work in the future.

Simulations for Lab Reports

● You are using simulations to communicate something to the reader.
○ Usually, “proving” correct behavior of your circuit/system.

○ Difficult to interpret on their own, so accompanying explanation is critical.

○ Useful both to the grader and to you looking back on this work in the future.

● Goals and Tips:
○ All of simulation is included – can be split across multiple images, if needed.

■ Helpful to design test bench to be as concise as possible.

○ Labeling – time (horizontal) axis and all signal names are clearly visible.

■ Can undock the Wave pane to change window size or can drag vertical

divider of Transcript pane up to get time axis label closer to signals.

■ Toggling to leaf names shortens signal names.

○ All signal values are visible throughout the simulation.

■ Changing radix can help condense but should make sense in context.

Simulations for Lab Reports (BAD Example)

● What are we looking at here???

Simulations for Lab Reports (GOOD Example)

● Split across two images to make values of leds legible.

● Changed bcd radix to hexadecimal: easier to read and matches use case.
○ Decimal would work here, too.

● Can refer to specific times in simulation in explanation now.

	Slide 1: Section 3
	Slide 2: Administrivia
	Slide 3: New SystemVerilog Commands
	Slide 4: Test Benches
	Slide 5: Writing a Test Bench
	Slide 6: Test Vectors for Combinational Logic
	Slide 7: Test Vectors for Combinational Logic
	Slide 8: Test Vectors for Combinational Logic
	Slide 9: Exercise 1
	Slide 10: Exercise 1 (Solution)
	Slide 11: Exercise 1 (Solution)
	Slide 12: Exercise 1 (Solution)
	Slide 13: Exercise 1 (Solution)
	Slide 14: Exercise 1 (Solution)
	Slide 15: Exercise 2
	Slide 16: Exercise 2 (Solution)
	Slide 17: Exercise 2 (Solution)
	Slide 18: Exercise 2 (Solution)
	Slide 19: Exercise 2 (Solution)
	Slide 20: Exercise 2 (Solution)
	Slide 21: ModelSim Tips & Tricks
	Slide 22: Simulation Workflow (Review)
	Slide 23: Zoom Tools
	Slide 24: Zoom Tools
	Slide 25: Signal Radix
	Slide 26: Exercise 3
	Slide 27: Exercise 3 (Solution)
	Slide 28: Exercise 3 (Solution)
	Slide 29: Internal Signals
	Slide 30: Exercise 3 (Debugging)
	Slide 31: Exercise 3 (Debugging)
	Slide 32: Lab Reports
	Slide 33: Simulations for Lab Reports
	Slide 34: Simulations for Lab Reports
	Slide 35: Simulations for Lab Reports (BAD Example)
	Slide 36: Simulations for Lab Reports (GOOD Example)

