
CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Intro to Digital Design
FSM Design, MUXes, Adders
Instructor: Chris Thachuk

Teaching Assistants:
Eujean Lee Nandini Talukdar
Stephanie Osorio-Tristan Wen Li

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Relevant Course Information

v Lab 6 – Connecting multiple FSMs in Tug of War game
§ Bigger step up in difficulty from Lab 5
§ Putting together complex system – interconnections!
§ Bonus points for smaller resource usage

2

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Clock Divider (not for simulation)

v Why/how does this work?

3

// divided_clocks[0]=25MHz, [1]=12.5Mhz, ...
module clock_divider (clock, divided_clocks);
 input logic clock;
 output logic [31:0] divided_clocks;

 initial
 divided_clocks = 0;

 always_ff @(posedge clock)
 divided_clocks <= divided_clocks + 1;

endmodule // clock_divider

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Outline

v FSM Design
v Multiplexors
v Adders

4

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

FSM Design Process

1) Understand the problem

2) Draw the state diagram

3) Use state diagram to produce state table

4) Implement the combinational control logic

5

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Practice: String Recognizer FSM

v Recognize the string 101 with the following behavior
§ Input: 1 0 0 1 0 1 0 1 1 0 0 1 0
§ Output: 0 0 0 0 0 1 0 1 0 0 0 0 0

v State diagram to implementation:

6

00 01 11 10

0

1

00 01 11 10

0

1

00 01 11 10

0

1

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

HDL Organization

v Most problems are best solved with multiple pieces – how to best
organize your system and code?

v Everything is computed in parallel
§ We use routing elements (next lecture) to select between (or ignore) multiple

outcomes/parts
§ This is why we use block diagrams and waveforms

v A module is not a function, it is closest to a class
§ Something that you instantiate, not something that you call – hardware cannot

appear and disappear spontaneously
§ Should treat modules as resource managers rather than temporary helpers

• This can include having internal modules
7

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Block Diagrams

v Block diagrams are the basic design tool for digital logic.
§ The diagram itself is a module → inputs and outputs shown and connected
§ Major components are represented by blocks (“black boxes”) with their internals

abstracted away → each block becomes its own module
§ All ports for each block should be shown and labeled and connected to the

appropriate part(s) of the rest of the system → sets your port connections
§ Wires and other basic building blocks can be added/shown as needed

v From Wikipedia: The goal is to “[end] in block diagrams detailed enough
that each individual block can be easily implemented.”
§ For designs that involve multiple modules, should always create your block

diagram before coding anything!
8

https://en.wikipedia.org/wiki/Block_diagram

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Subdividing FSMs Example

v “Psychic Tester”
§ Machine generates a 4-bit pattern
§ User tries to guess 8 patterns in a row to be deemed psychic

v States?

9

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Example: Plan First with Block Diagram

v Pieces?
§ Generate/pick pattern

§ User input (guess)

§ Check guess

§ Count correct guesses

10

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Example: Blocks → Modules

v Pieces?
§ Generate/pick pattern

• module genPatt (pattern, next, clock);

§ User input (guess)
• module userIn (guess, submit, KEY);

§ Check guess
• module checkGuess (correct, guess, pattern);

§ Count correct guesses
• module countRight (psychic, next, correct, submit, clock);

11

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Example: Implementation & Testing

1) Create individual submodules

2) Create submodules test benches – test as usual
§ CL – run through all input combinations
§ SL – take every transition that you care about

3) Create top-level module
§ Create instance of each submodule
§ Create wires/nets to connect signals between submodules, inputs, and outputs

4) Create top-level test bench
§ Goal is to check the interconnections between submodules – does input/state

change in one submodule trigger the expected change in other submodules?
12

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Outline

v FSM Design
v Multiplexors
v Adders

13

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Data Multiplexor

v Multiplexor (“MUX”) is a selector
§ Direct one of many (N = 2s) 𝑛-bit wide inputs onto output
§ Called a 𝑛-bit, N-to-1 MUX

v Example: 𝑛-bit 2-to-1 MUX
§ Input S (s bits wide) selects between two inputs of 𝑛 bits each

14

This input is passed to
output if selector bits
match shown valueN inputs

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Review: Implementing a 1-bit 2-to-1 MUX

v Schematic:

v Truth Table:

v Boolean Algebra:

v Circuit Diagram:

15

s a b c
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

1-bit 4-to-1 MUX

v Schematic:

v Truth Table: How many rows?

v Boolean Expression:
 𝑒 = $𝑠! $𝑠"𝑎 + $𝑠!𝑠"𝑏 + 𝑠! $𝑠"𝑐 + 𝑠!𝑠"𝑑

16

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

1-bit 4-to-1 MUX

v Can we leverage what we’ve previously built?
§ Alternative hierarchical approach:

17

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Multiplexers in General Logic

v Implement F = X$YZ + Y/Z with a 8:1 MUX

18

S2
S1
S0

0

7

1
2
3
4
5
6

F8:1
MUX

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Technology
Break

19

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Outline

v FSM Design
v Multiplexors
v Adders

20

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Review: Unsigned Integers

v Unsigned values follow the standard base 2 system
§ b!b"b#b$b%b&b'b(= b!2! + b"2" +⋯+ b'2' + b(2(

v In 𝑛 bits, represent integers 0 to 2#-1

v Add and subtract using the normal “carry” and “borrow” rules, just in
binary

21

00111111
+00001000
 01000111

63
+ 8
 71

01000000
-00001000
 00111000

64
- 8
 56

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Review: Two’s Complement (Signed)

v Properties:
§ In 𝑛 bits, represent integers −2)*' to 2)*' − 1
§ Positive number encodings match

unsigned numbers
§ Single zero (encoding = all zeros)

v Negation procedure:
§ Take the bitwise complement

and then add one
(~x + 1 == -x)

22

b!"# has weight −2!"#, other bits have usual weights +2$

.	.	. b0bw-1 bw-2

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Two’s
Complement

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Addition and Subtraction in Hardware

v The same bit manipulations work for both unsigned and two’s
complement numbers!
§ Perform subtraction via adding the negated 2nd operand:
A − B = A + −B = A + ~B + 1

v 4-bit examples:

23

Two’s Un

0 0 1 0 +2 2
+ 1 1 0 0 -4 12

Two’s Un

1 0 0 0 -8 8
+ 0 1 0 0 +4 4

0 1 1 0 +6 6
- 0 0 1 0 +2 2

1 1 1 1 -1 15
- 1 1 1 0 -2 14

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Half Adder (1 bit)

24

Carry-out bit
a0 b0 c1 s0
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Carry = a(b(
 Sum = 𝑎(⊕b(

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Full Adder (1 bit)

25

Possible
carry-in c1

ci ai bi ci+1 si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

𝒔𝒊 = XOR 𝑎, , 𝑏, , 𝑐,
𝒄𝒊-𝟏 = MAJ 𝑎, , 𝑏, , 𝑐, 	
𝒄𝒊-𝟏 = 𝑎,𝑏, + 𝑎,𝑐, + 𝑏,𝑐,

Carry-outCarry-in

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Multi-Bit Adder (N bits)

v Chain 1-bit adders by connecting CarryOuti to CarryIni+1:

26

+ + +
b0

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Subtraction?

v Can we use our multi-bit adder to do subtraction?
§ Flip the bits and add 1?

• X⊕ 1 = ,X
• CarryIn0 (using full adder in all positions)

27

+ + +
b0

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Multi-bit Adder/Subtractor

28

𝑥 ⊕ 1 = 𝑥̅
(flips the bits)

This signal is only
high when you
perform subtraction

Add 1

+ + +

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Detecting Arithmetic Overflow

v Overflow: When a calculation produces a result that can’t be
represented in the current encoding scheme
§ Integer range limited by fixed width
§ Can occur in both the positive and negative directions

v Unsigned Overflow
§ Result of add/sub is > UMax or < Umin

v Signed Overflow
§ Result of add/sub is > TMax or < TMin
§ (+) + (+) = (−) or (−) + (−) = (+)

29

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Signed Overflow Examples

30

Two’s

0 1 0 1 +5
+ 0 0 1 1 +3

Two’s

1 0 0 1 -7
+ 1 1 1 0 -2

Two’s

0 1 0 1 +5
+ 0 0 1 0 +2

Two’s

1 1 0 0 -4
+ 0 1 0 0 4

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Multi-bit Adder/Subtractor with Overflow

31

+ + +

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Arithmetic and Logic Unit (ALU)

v Processors contain a special logic block called the “Arithmetic and Logic
Unit” (ALU)
§ Here’s an easy one that does ADD, SUB, bitwise AND, and bitwise OR (for 32-bit

numbers)

v Schematic:

32

when S=00, R = A+B
when S=01, R = A–B
when S=10, R = A&B
when S=11, R = A|B

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Simple ALU Schematic

33

Notice that 3 values
are ALWAYS calculated
in parallel, but only 1
makes it to the Result

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

1-bit Adders in Verilog

v What’s wrong with this?
§ Truncation!

v Fixed:
§ Use of {sig, …, sig} for concatenation

34

module halfadd1 (s, a, b);
 output logic s;
 input logic a, b;

 always_comb begin
 s = a + b;
 end
endmodule

module halfadd2 (c, s, a, b);
 output logic c, s;
 input logic a, b;

 always_comb begin
 {c, s} = a + b;
 end
endmodule

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Ripple-Carry Adder in Verilog

v Chain full adders?

35

module fulladd (cout, s, cin, a, b);
 output logic cout, s;
 input logic cin, a, b;

 always_comb begin
 {cout, s} = cin + a + b;
 end
endmodule

module add2 (cout, s, cin, a, b);
 output logic cout; output logic [1:0] s;
 input logic cin; input logic [1:0] a, b;
 logic c1;

 fulladd b1 (cout, s[1], c1, a[1], b[1]);
 fulladd b0 (c1, s[0], cin, a[0], b[0]);
endmodule

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Add/Sub in Verilog (parameterized)

v Variable-width add/sub (with overflow, carry)

§ Here using OF = overflow flag, CF = carry flag (from condition flags in x86-64 CPUs)
36

module addN #(parameter N=32) (OF, CF, S, sub, A, B);
 output logic OF, CF;
 output logic [N-1:0] S;
 input logic sub;
 input logic [N-1:0] A, B;
 logic [N-1:0] D; // possibly flipped B
 logic C2; // second-to-last carry-out

 always_comb begin
 D = B ^ {N{sub}}; // replication operator
 {C2, S[N-2:0]} = A[N-2:0] + D[N-2:0] + sub;
 {CF, S[N-1]} = A[N-1] + D[N-1] + C2;
 OF = CF ^ C2;
 end
endmodule // addN

CSE369, Autumn 2024L6: FSM Design, MUXes, Adders

Add/Sub in Verilog (parameterized)

37

module addN_tb ();
 parameter N = 4;
 logic sub;
 logic [N-1:0] A, B;
 logic OF, CF;
 logic [N-1:0] S;

 addN #(.N(N)) dut (.OF, .CF, .S, .sub, .A, .B);

 initial begin
 #100; sub = 0; A = 4'b0101; B = 4'b0010; // 5 + 2
 #100; sub = 0; A = 4'b1101; B = 4'b1011; // -3 + -5
 #100; sub = 0; A = 4'b0101; B = 4'b0011; // 5 + 3
 #100; sub = 0; A = 4'b1001; B = 4'b1110; // -7 + -2
 #100; sub = 1; A = 4'b0101; B = 4'b1110; // 5 -(-2)
 #100; sub = 1; A = 4'b1101; B = 4'b0101; // -3 - 5
 #100; sub = 1; A = 4'b0101; B = 4'b1101; // 5 -(-3)
 #100; sub = 1; A = 4'b1001; B = 4'b0010; // -7 - 2
 #100;
 end
endmodule // addN_tb

