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Relevant Course Information

v Lab 6 – Connecting multiple FSMs in Tug of War game
§ Bigger step up in difficulty from Lab 5
§ Putting together complex system – interconnections!
§ Bonus points for smaller resource usage
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Clock Divider (not for simulation)

v Why/how does this work?
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// divided_clocks[0]=25MHz, [1]=12.5Mhz, ... 
module clock_divider (clock, divided_clocks);
  input  logic        clock;
  output logic [31:0] divided_clocks;

  initial
    divided_clocks = 0;

  always_ff @(posedge clock)
    divided_clocks <= divided_clocks + 1;

endmodule  // clock_divider
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Outline

v FSM Design
v Multiplexors
v Adders
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FSM Design Process

1) Understand the problem

2) Draw the state diagram

3) Use state diagram to produce state table

4) Implement the combinational control logic
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Practice:  String Recognizer FSM

v Recognize the string 101 with the following behavior
§ Input:  1 0 0 1 0 1 0 1 1 0 0 1 0 
§ Output:  0 0 0 0 0 1 0 1 0 0 0 0 0

v State diagram to implementation:
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HDL Organization

v Most problems are best solved with multiple pieces – how to best 
organize your system and code?

v Everything is computed in parallel
§ We use routing elements (next lecture) to select between (or ignore) multiple 

outcomes/parts
§ This is why we use block diagrams and waveforms

v A module is not a function, it is closest to a class
§ Something that you instantiate, not something that you call – hardware cannot 

appear and disappear spontaneously
§ Should treat modules as resource managers rather than temporary helpers

• This can include having internal modules
7
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Block Diagrams

v Block diagrams are the basic design tool for digital logic. 
§ The diagram itself is a module → inputs and outputs shown and connected
§ Major components are represented by blocks (“black boxes”) with their internals 

abstracted away → each block becomes its own module
§ All ports for each block should be shown and labeled and connected to the 

appropriate part(s) of the rest of the system → sets your port connections
§ Wires and other basic building blocks can be added/shown as needed

v From Wikipedia:  The goal is to “[end] in block diagrams detailed enough 
that each individual block can be easily implemented.”
§ For designs that involve multiple modules, should always create your block 

diagram before coding anything!
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https://en.wikipedia.org/wiki/Block_diagram
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Subdividing FSMs Example

v “Psychic Tester”
§ Machine generates a 4-bit pattern
§ User tries to guess 8 patterns in a row to be deemed psychic

v States?
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Example: Plan First with Block Diagram

v Pieces?
§ Generate/pick pattern

§ User input (guess)

§ Check guess

§ Count correct guesses
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Example: Blocks → Modules

v Pieces?
§ Generate/pick pattern

• module genPatt (pattern, next, clock);

§ User input (guess)
• module userIn (guess, submit, KEY);

§ Check guess
• module checkGuess (correct, guess, pattern);

§ Count correct guesses
• module countRight (psychic, next, correct, submit, clock);
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Example: Implementation & Testing

1) Create individual submodules

2) Create submodules test benches – test as usual
§ CL – run through all input combinations
§ SL – take every transition that you care about

3) Create top-level module
§ Create instance of each submodule
§ Create wires/nets to connect signals between submodules, inputs, and outputs

4) Create top-level test bench
§ Goal is to check the interconnections between submodules – does input/state 

change in one submodule trigger the expected change in other submodules?
12
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Outline

v FSM Design
v Multiplexors
v Adders
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Data Multiplexor

v Multiplexor (“MUX”) is a selector
§ Direct one of many (N = 2s) 𝑛-bit wide inputs onto output 
§ Called a 𝑛-bit, N-to-1 MUX

v Example:  𝑛-bit 2-to-1 MUX
§ Input S (s bits wide) selects between two inputs of 𝑛 bits each
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This input is passed to 
output if selector bits 
match shown valueN inputs
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Review:  Implementing a 1-bit 2-to-1 MUX 

v Schematic:

v Truth Table:

v Boolean Algebra:

v Circuit Diagram:
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s a b c
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
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1-bit 4-to-1 MUX

v Schematic:

v Truth Table:  How many rows?

v Boolean Expression:  
 𝑒 = $𝑠! $𝑠"𝑎 + $𝑠!𝑠"𝑏 + 𝑠! $𝑠"𝑐 + 𝑠!𝑠"𝑑
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1-bit 4-to-1 MUX

v Can we leverage what we’ve previously built?
§ Alternative hierarchical approach:
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Multiplexers in General Logic

v Implement F = X$YZ + Y/Z with a 8:1 MUX
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Technology
Break
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Outline

v FSM Design
v Multiplexors
v Adders
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Review:  Unsigned Integers

v Unsigned values follow the standard base 2 system
§ b!b"b#b$b%b&b'b( = b!2! + b"2" +⋯+ b'2' + b(2(

v In 𝑛 bits, represent integers 0 to 2#-1

v Add and subtract using the normal “carry” and “borrow” rules, just in 
binary
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00111111
+00001000
 01000111

63
+ 8
 71

01000000
-00001000
 00111000

64
- 8
 56
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Review:  Two’s Complement (Signed)

v Properties:
§ In 𝑛 bits, represent integers −2)*' to 2)*' − 1
§ Positive number encodings match 

unsigned numbers
§ Single zero (encoding = all zeros)

v Negation procedure:
§ Take the bitwise complement 

and then add one
( ~x + 1 == -x )
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b!"# has weight −2!"#, other bits have usual weights +2$

.	.	. b0bw-1 bw-2

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Two’s
Complement
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Addition and Subtraction in Hardware

v The same bit manipulations work for both unsigned and two’s 
complement numbers!
§ Perform subtraction via adding the negated 2nd operand:
A − B = A + −B = A + ~B + 1 

v 4-bit examples:
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Two’s Un

0 0 1 0 +2 2
+ 1 1 0 0 -4 12

Two’s Un

1 0 0 0 -8 8
+ 0 1 0 0 +4 4

0 1 1 0 +6 6
- 0 0 1 0 +2 2

1 1 1 1 -1 15
- 1 1 1 0 -2 14



CSE369, Autumn 2024L6:  FSM Design, MUXes, Adders

Half Adder (1 bit)
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Carry-out bit
a0 b0 c1 s0
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Carry = a(b( 
  Sum = 𝑎(⊕b(
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Full Adder (1 bit)
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Possible 
carry-in c1

ci ai bi ci+1 si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

𝒔𝒊 = XOR 𝑎, , 𝑏, , 𝑐,  
𝒄𝒊-𝟏 = MAJ 𝑎, , 𝑏, , 𝑐, 	
𝒄𝒊-𝟏 = 𝑎,𝑏, + 𝑎,𝑐, + 𝑏,𝑐,  

Carry-outCarry-in



CSE369, Autumn 2024L6:  FSM Design, MUXes, Adders

Multi-Bit Adder (N bits)

v Chain 1-bit adders by connecting CarryOuti to CarryIni+1:

26

+ + +
b0
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Subtraction?

v Can we use our multi-bit adder to do subtraction?
§ Flip the bits and add 1? 

• X⊕ 1 = ,X
• CarryIn0 (using full adder in all positions)

27

+ + +
b0
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Multi-bit Adder/Subtractor
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𝑥 ⊕ 1 = 𝑥̅ 
(flips the bits)

This signal is only
high when you
perform subtraction

Add 1

+ + +
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Detecting Arithmetic Overflow

v Overflow:  When a calculation produces a result that can’t be 
represented in the current encoding scheme
§ Integer range limited by fixed width
§ Can occur in both the positive and negative directions

v Unsigned Overflow
§ Result of add/sub is > UMax or < Umin

v Signed Overflow
§ Result of add/sub is > TMax or < TMin
§ (+) + (+) = (−)  or  (−) + (−) = (+)
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Signed Overflow Examples

30

Two’s

0 1 0 1 +5
+ 0 0 1 1 +3

Two’s

1 0 0 1 -7
+ 1 1 1 0 -2

Two’s

0 1 0 1 +5
+ 0 0 1 0 +2

Two’s

1 1 0 0 -4
+ 0 1 0 0 4
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Multi-bit Adder/Subtractor with Overflow

31

+ + +
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Arithmetic and Logic Unit (ALU)

v Processors contain a special logic block called the “Arithmetic and Logic 
Unit” (ALU)
§ Here’s an easy one that does ADD, SUB, bitwise AND, and bitwise OR (for 32-bit 

numbers)

v Schematic:
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when S=00, R = A+B
when S=01, R = A–B
when S=10, R = A&B
when S=11, R = A|B
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Simple ALU Schematic
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Notice that 3 values 
are ALWAYS calculated 
in parallel, but only 1 
makes it to the Result
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1-bit Adders in Verilog

v What’s wrong with this?
§ Truncation!

v Fixed:
§ Use of {sig, …, sig} for concatenation
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module halfadd1 (s, a, b);
  output logic s;
  input  logic a, b;

  always_comb begin
    s = a + b;
  end
endmodule

module halfadd2 (c, s, a, b);
  output logic c, s;
  input  logic a, b;
 
  always_comb begin
    {c, s} = a + b;
  end
endmodule
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Ripple-Carry Adder in Verilog

v Chain full adders?
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module fulladd (cout, s, cin, a, b);
  output logic cout, s;
  input  logic cin, a, b;
 
  always_comb begin
    {cout, s} = cin + a + b;
  end
endmodule

module add2 (cout, s, cin, a, b);
  output logic cout; output logic [1:0] s;
  input  logic cin;  input  logic [1:0] a, b;
  logic  c1;
  
  fulladd b1 (cout, s[1], c1,  a[1], b[1]);
  fulladd b0 (c1,   s[0], cin, a[0], b[0]);
endmodule
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Add/Sub in Verilog (parameterized)

v Variable-width add/sub (with overflow, carry)

§ Here using OF = overflow flag, CF = carry flag (from condition flags in x86-64 CPUs)
36

module addN #(parameter N=32) (OF, CF, S, sub, A, B);
  output logic         OF, CF;
  output logic [N-1:0] S;
  input  logic         sub;  
  input  logic [N-1:0] A, B;
  logic  [N-1:0] D;    // possibly flipped B
  logic          C2;   // second-to-last carry-out
  
  always_comb begin
    D = B ^ {N{sub}};  // replication operator
   {C2, S[N-2:0]} = A[N-2:0] + D[N-2:0] + sub;
    {CF, S[N-1]} = A[N-1] + D[N-1] + C2;
    OF = CF ^ C2;
  end
endmodule  // addN
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Add/Sub in Verilog (parameterized)
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module addN_tb ();
  parameter N = 4;
  logic         sub;
  logic [N-1:0] A, B;
  logic         OF, CF;
  logic [N-1:0] S;
 
  addN #(.N(N)) dut (.OF, .CF, .S, .sub, .A, .B);
 
  initial begin
    #100;  sub = 0;  A = 4'b0101;  B = 4'b0010;  //  5 +  2
    #100;  sub = 0;  A = 4'b1101;  B = 4'b1011;  // -3 + -5
    #100;  sub = 0;  A = 4'b0101;  B = 4'b0011;  //  5 +  3
    #100;  sub = 0;  A = 4'b1001;  B = 4'b1110;  // -7 + -2
    #100;  sub = 1;  A = 4'b0101;  B = 4'b1110;  //  5 -(-2)
    #100;  sub = 1;  A = 4'b1101;  B = 4'b0101;  // -3 -  5
    #100;  sub = 1;  A = 4'b0101;  B = 4'b1101;  //  5 -(-3)
    #100;  sub = 1;  A = 4'b1001;  B = 4'b0010;  // -7 -  2
    #100;
  end
endmodule  // addN_tb


