Intro to Digital Design

Instructor: Chris Thachuk

Teaching Assistants:
Eujean Lee Nandini Talukdar

Stephanie Osorio-Tristan Wen Li

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Relevant Course Information

+ Lab 3 Demos due during your assigned demo slots

= Don’t forget to submit your lab materials before Wednesday at 2:30 pm, regardless
of your demo time

+» Lab 4 — Extension of Lab 3 using 7-seg displays

+» Quiz 1is next week in lecture
= Last 20 minutes, worth 10% of your course grade
® On Lectures 1-3: CL, K-maps, Waveforms, and Verilog
= Past Quiz 1 (+ solutions) on website: Course Info — Quizzes

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Synchronous Digital Systems (SDS)

<~ Combinational Logic (CL)

X, —» —> 7 = Network of logic gates without feedback

X, —» Logi —> 7 . .

:2 Neff,';rk :2 " Qutputs are functions only of inputs

X, —> —> 7,

<
@equential Logic (SL)

X, —> — 7, = The presence of feedback introduces the notion of

X;—» Logic [—>Z “state”

: Net k : . . 7 ” . :
T . = Circuits that can “remember” or store information

r[—

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Uses for Sequential Logic

+ Place to store values for some amount of time:
= Registers
" Memory I
—-\\\mw\b .
+ Help control flow of information between combinational logic blocks

" Hold up the movement of information to allow for orderly passage through CL

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

Control Flow of Information?

% Circuits can temporarily go to incorrect states!

Copilot Autopilot Request B
Pilot in Charge? Autopilot Engaged
Pilot Autopilot Request C
CAR (1
PIC {1 - |0
PAR (1
- A0
Blo T
o : . | - LineCld40 - -
: . . . Uw\h)av\ 65*/‘6“‘-"#.6 . .
et seMevio - - | -
S R N B B
AE 11 - : u :

CSE369, Autumn 2024

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Accumulator Example

+ An example of why we would need to control the flow of information.

X /—> Accumulator /—> S

for (1 = 0; 1 < nj; 1++)
S — S + X_I ; — S‘fo‘o condrtion?

t_secluer\ce of iV‘P\Kl-S
< Assume:

= Each X value is applied in succession, one per cycle
"= The sum since cycle Ois presenton S

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Accumulator: First Try

«» Does this work? S=5+%

" No % 1
[L Ac\G\A (m’.-‘—\\an\-, 7)

n EA\rL’

| | nstartinesws

1) How to control the next iteration of the ‘for’ loop?
2) How do we accomplish ‘S = 0’7

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

State Element: Flip-Flop @

A -
+ Positive edge-triggered D-type flip flop FF | ‘i,
"= On the rising edge of the clock (o §1_), input d is sampled and transferred to the
output g

= At all other times, the input d is ignored and the previously sampled value is
retained

ST B I R N R W B

) l.ﬂhored]

e —
|J

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

State Element: Register

éf“ n-ure bu d(:\ - N
D }

ot 45 = g [
. SHRLE BRGES
{n %nol C[h;;_ 9o

+» m instances of flip-flops together
" One for every bit in input/output bus width

%~ Output Q resets to zero when Reset sighal is high during clock trigger

= Some extra circuitry required for this

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Accumulator: Second Try

.8 7 Register holds up the

transfer of data to adder
4 ‘[\mﬂ D/

vesel Ye,gf\st’a LOAD/ LK
oot Q

o LM

rkl/

Delay through Register and Adder —>| |<— i . i B
Rough S e T et Toermake Yoo
timing | | | |
diagram P J *o 1 X} Xz { X3 I

Time >

10

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Flip-Flop Timing Terminology (1/2)

+» Camera Analogy: non-blurry digital photo
" Don’t move while camera shutter is opening
" Don’t move while camera shutter is closing
" Check for blurriness once image appears on the display

11

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

Flip-Flop Timing Terminology (2/2)

+» Now applied to sequential logic elements:

= Setup Time: how long the input must be stable before the CLK trigger for proper
input read

" Hold Time: how long the input must be stable after the CLK trigger for proper
input read

" “CLK-to-Q” Delay: how long it takes the output to change, measured from the CLK
trigger

12

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Flip-Flop Timing Behavior

CLIN

L —IFF 9

e

CAK — < Input date musw‘ be stable.
' | v\‘\’\u\s ?Qx\

Ly e "setup" time
ih()ld— Mwﬁ ‘
Cor\s i ;-< l_\o &Il +\W\<_,
WL

| —
|
I
l
l
l

N

cza e “L\K-+o—ﬁl" chaq

T A

13

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

CSE369, Autumn 2024

Accumulator: Proper Timing

reset signal shown
» X;and S;_; arrive at adder at different times

= S. becomes “wrong” temporarily but corrects before
register captures its value

» Avoid input instability around rising edge of CLK

Se-1

X \: (Qk+'€(nal)

et —

L XX % XX X

14

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Review Question

+ Which of the following statements is TRUE?

(A)
Ll B=tC seh’f-) f,l'\o\()\ times
B) A flip-flop switches between-6-anmd—1 on each trigger.
(B) Aflip-flop iches betweens g8
(C) In a SDS, we only need to know setup time, hold time, and clk-to-g

delay constants to ensure correct behavior. — a% ned CL delays, clock periad,
€X'l'ewxo\l i/\()\,C," ’h‘m‘.rﬁ) C_‘k.

(D) | None of the above.

15

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Model for Synchronous Digital Systems

clock _[1] | input

input | o) OUIPLL

+» Combinational logic blocks separated by registers
" Clock signal connects only to sequential logic elements

= Feedback is optional depending on application

+ How do we ensure proper behavior?

" How fast can we run our clock?

16

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

CSE369, Autumn 2024

When Can the Input Change?

+ When a register input changes shouldn’t violate hold time (t;,,;4) or
setup time (tgetqp) cOnstraints within a clock period (t,eripq)

= Let tippye,; be the time it takes for the input of a register to change for
the i-th timein a sinéle clock cycle, measured from the CLK trigger:
4

@ .
" Then we need ty10 < tinput,i = tperioa — tserup foralli

= Two separate constraints!

@) !@):

@ {lhpa’l - Lo\l
@ -éinpd-’ty\ - z{Perde - t

sc“u(’

17

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Minimum Delay

+ |f shortest path to register input is too short, might violate t;,,;4
constraint
" |nput could change before state is “locked in”
= Particularly problematic with asynchronous signals

Inputs Outguts
<fif;oixim|.>l CombivL?ctional

Lobi Min Delay = min(CLK-to-Q Delay
_AL‘ + :
v)Next State Min CL Delay)
‘> Register Min Delay = Hold Time
| Gurrent Statel

18

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Maximum Clock Frequency

+» What is the max frequency of this circuit?

= Limited by how much time needed to get correct Next State to Register
(tsetup CONstraint)

Inputs Outguts
<fif&;r§m| Combinational
Lobi Max Delay= max(CLK-to-Q Delay
—P>
_T : |
igext State + Max CL Delay)
‘> Register Min Period = Max Delay + Setup Time
Ml& Max Freq = 1/Min Period

19

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

The Critical Path

+» The critical path is the longest delay between any two registers in a
circuit

+» The clock period must be longer than this critical path, or the signal will
not propagate properly to that next register

Critical Path =
CLK-to-Q Delay
+ CL Delay 1
+ CL Delay 2
+ CL Delay 3
+ Adder Delay
+ Setup Time

Bau\<
=
89y <

20

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Practice Question micro |07

{P«.oa\ nano O
‘(\;@L—: lD s ——?penu\ lO s=Ins= lODOEs
» We want to run on 1 GHz processor. t,, = 100 ps, t,. = 200 ps,

tsetup = thod = 20 ps. What is the maximum t 4, , we can use?
‘él’\o[d é ?éinruﬁ)f, _4_ ffevba\-{.‘e‘lupz

npt, . = {czQ—L éaM_L 'éml““"éa&& — -é["" Y ‘ésdk‘, j{ , TC
P 100 100 100 10O 50 @@ = 550(’5

((A) | (B) 750 ps (C) (D) 700 ps

21

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Technology
Break

22

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Where Do Timing Terms Come From?

Edge-triggered
D flip-flop:

Clocko—

Q|

Datac

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=40852354

23

https://commons.wikimedia.org/w/index.php?curid=40852354

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Safe Sequential Circuits

+» Clocked elements on feedback, perhaps outputs
" Clock signal synchronizes operation

" Clocked elements hide glitches/hazards

_> M
X1 > |Z1
X2 Logic —__—"\ Z2
Network -_L/\ reﬁis‘\'efj

= |

Clock

[
Data . Compute # Valid >(Compute * valid X Compute 4(
ooy glitches ’:Wef\ hee D "m Hfm' ' ' ! 24

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Autopilot Revisited

+ Flip-flops can “filter out” unintended behavior:
" stage "t (ohpm+&‘}:5h

CLK| L -I.b -
QA CAR
0]

- - DEF
Copilot Autopilot Request
P P k Deng D— -F @Q = Autopilot Engaged (M)
o @Q PIC Dend
Pilot in Charge? Den0 }
-b _qp= PAR
Pilot Autopilot Request sy

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Waveform Diagrams Revisited

+ Easiest to start with CLK on top
= Solve signal by signal, from inputs to outputs

= Can only draw the waveform for a signal if all of its input waveforms are drawn

+» When dges a signal update?
= Astate érgment updates based on CLK triggers

CL
= A combinatclon>al element updates ANY time ANY of its inputs changes

26

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Example: SDS Waveform Diagram

+ Assume: tCZQ =3 tiCkS, tXOR =2 tiCkS, tNOT =1 tl_C.k, tS = th =0

= Note: clocking the gate is a terrible idea

27

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Verilog: Basic D Flip-Flop, Register

module basic_D_FF (g, d, clk);
output logic q; // g is state-holding
input logic d, clk;
reac+ ‘l’ o risihg eAje)
always_ff @(posedge clk) of i sigral
% <= d; // use <= for clocked elements
endmodule

module basic_reg (q, d, clk);
output logic [7:0] q;
input logic [7:0] d;
input logic clk;
us widdhs oF ¥
always_ff @(posedge clk)
Q<5 d;
endmodule

CSE369, Autumn 2024

28

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Procedural Blocks

+ always: loop to execute over and over again
= Block gets triggered by a sensitivity list

= Any object that is assigned a value in an always statement must be declared as a
variable (Logic or reg).

= Example:
- always @ (posedge clk)

+» always_Tf: special SystemVerilog for SL
= Only for use with sequential logic — signal intent that you want flip-flops

= Example:
- always_ff @ (posedge clk)

29

WA/ UNIVERSITY of WASHINGTON

Blocking vs. Nonblocking

L4: Sequential Logic

CSE369, Autumn 2024

+ Blocking statement (=): statement effects evaluated sequentially
= Resembles programming languages

<+ Nonblocking statement (<=): statement effects evaluated “in parallel”

" Resembles hardware

«» Example: always_ff @ (posedge clk)
begin
b = a;
cC = b;
end

B
0 0
DQ D Q]

CLK|J™

A

always_ff @ (posedge clk)
begin

b <= a;

c <= b;
end

CLK|J™

30

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

SystemVerilog Coding Guidelines

1) When modeling sequential logic, use nonblocking assignments

2) When modeling combinational logic with an always_comb block, use
blocking assignments

3) When modeling both sequential and combinational logic within the same
always_TT block, use nonblocking assignments

4) Do not mix blocking and nonblocking assignments in the same always_x*
block

5) Do not make assignments to the same variable from more than one
always_* block

31

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Verilog: Reset Functionality

. :
D Deno
(Reset

+» Option 1: synchronous reset

module D_FF1 (q, d, reset, clk);
output logic q; // g is state-holding
input Tlogic d, reset, clk;

always_ff @(posedge clk)
if (reset) — reset can 6'\'\/ okcur o~ clock ‘ﬁrigjer

q <= 0; // on reset, set to 0
else
q <= d; // otherwise pass d to g

endmodule

32

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

CSE369, Autumn 2024

Verilog: Reset Functionality

. illlii :
D Deno

Reset

+~ Option 2: asynchronous reset

module D_FF1 (q, d, reset, clk);
output logic q; // g is state-holding
input 1logic d, reset, clk; any rech predge,
/ Inere in The clock
always_ff @(posedge clk or posgdge reset)
if (reset)

q <= 0; // on reset, set to 0
else
q <= d; // otherwise pass d to g

endmodule

no W\U\"h((f
ey (,\e

33

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Verilog: Simulated Clock

+» For simulation, you need to generate a clock signal:

= For entirety of simulation/program, so use always block

Explicit | initial Toggle: | initial
Edges: clk = 0; clk = G);
always begin always
#50 clk <= 1; #50 clk <= ~clk;
#50 clk <= 0; /
end k——ha“-ymrmé /

+» Define clock period: parametek period = 100);
initial
= Define parameter clk = O
lll<e i‘(}e(hne MGy > _S\-f\la.&lr‘\/\'l‘b"\ N C, always
#(period/2) clk <= ~clk;

34

WA/ UNIVERSITY of WASHIN

GTON

L4: Sequential Logic

Verilog Testbench with Clock

logic q;

DAL
e

—
—> @(posedge
—> @(posedge
— @ (posedge
— @(posedge
—> (@(posedge
$stop();
end
endmodule

D_FF dut (.q,

> parameter PERIOD

L, yinitial CLK <= 0;
always #(PERIOD/2) CLK<= ~CLK;

initial begin

CLK);
CLK);
CLK);
CLK);
CLK);

.d,

)C—Y\b S\'d&ﬂm’i' here

module D_FF_testbench;
logic CLK, reset, dj; < simulated inpls

— DUT odput
100;
.reset, .CLK); // Instantiate the D_FF

// Set up clock

+hese oc@,.r}d‘ scFrer ¢ lock "'h“gje(;

Set up signals
d <= 0; reset <= 1;

reset <= 0;
d <= 1;
d <= 0;
(PERIOD/4) d <= 1;

// end the simulation
b, cholce

CSE369, Autumn 2024

35

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Timing Controls

+» Delay: #<time>
= Delays by a specific amount of simulation time

" Can do calculations in <time>
= Examples: #(PERIOD/4), #50

» Edge-sensitive: @(<pos/negedge> signal)
= Delays next statement until specified transition on signal
= Example: @(posedge CLK)

» Level-sensitive Event: wait(<expression>)
= Delays next statement until <expression> evaluates to TRUE
= Example: wait(enable == 1)

CSE369, Autumn 2024

36

WA/ UNIVERSITY of WASHINGTON

L4: Sequential Logic

CSE369, Autumn 2024

ModelSim Waveforms

PERTOD/Y

/D _FF testbench/clk
/D _FF testbench/reset

/D_FF testbench/d
/D_FF_testbench/q

initial begin

@(posedge

@(posedge

@(posedge

@(posedge

@(posedge

$stop () ;
end

d <= 0; reset <= 1;
CLK); reset <= 0;
CLK); d <= lL
CLK); d <= 03 happensjul dfter
CLK); #(PEB}OD/4) d <= 1;
CLKE C o aftey posedge

ho S-kK\eMGv\—\' 0Clnr S e\(aCH\/ ad

PoSecbe

Posec)je

37

CSE369, Autumn 2024

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic

Summary (1/2)

+ State elements controlled by clock

= Store information

= Control the flow of information between other state elements and combinational
logic

+ Registers implemented from flip-flops
" Triggered by CLK, pass input to output, can reset

+ Critical path constrains clock rate
" Timing constants: setup time, hold time, clk-to-q delay, propagation delays

38

WA/ UNIVERSITY of WASHINGTON L4: Sequential Logic CSE369, Autumn 2024

Summary (2/2)

+» Generating a clock
= Manually create using always block

" Need to decide on period

<

+ Blocking vs. Non-blocking
= Blocking: Statements executed “in series”
= Non-blocking: Statements executed “in parallel”

= Always use non-blocking for clocked elements

+» Synchronous vs. Asynchronous
= Whether signals are controlled by clock or not

39

	Slide 1: Intro to Digital Design Sequential Logic
	Slide 2: Relevant Course Information
	Slide 3: Synchronous Digital Systems (SDS)
	Slide 4: Uses for Sequential Logic
	Slide 5: Control Flow of Information?
	Slide 6: Accumulator Example
	Slide 7: Accumulator: First Try
	Slide 8: State Element: Flip-Flop
	Slide 9: State Element: Register
	Slide 10: Accumulator: Second Try
	Slide 11: Flip-Flop Timing Terminology (1/2)
	Slide 12: Flip-Flop Timing Terminology (2/2)
	Slide 13: Flip-Flop Timing Behavior
	Slide 14: Accumulator: Proper Timing
	Slide 15: Review Question
	Slide 16: Model for Synchronous Digital Systems
	Slide 17: When Can the Input Change?
	Slide 18: Minimum Delay
	Slide 19: Maximum Clock Frequency
	Slide 20: The Critical Path
	Slide 21: Practice Question
	Slide 22
	Slide 23: Where Do Timing Terms Come From?
	Slide 24: Safe Sequential Circuits
	Slide 25: Autopilot Revisited
	Slide 26: Waveform Diagrams Revisited
	Slide 27: Example: SDS Waveform Diagram
	Slide 28: Verilog: Basic D Flip-Flop, Register
	Slide 29: Procedural Blocks
	Slide 30: Blocking vs. Nonblocking
	Slide 31: SystemVerilog Coding Guidelines
	Slide 32: Verilog: Reset Functionality
	Slide 33: Verilog: Reset Functionality
	Slide 34: Verilog: Simulated Clock
	Slide 35: Verilog Testbench with Clock
	Slide 36: Timing Controls
	Slide 37: ModelSim Waveforms
	Slide 38: Summary (1/2)
	Slide 39: Summary (2/2)

