Intro to Digital Design Sequential Logic

Instructor: Chris Thachuk

Teaching Assistants:

Eujean Lee Nandini Talukdar

Stephanie Osorio-Tristan Wen Li

Relevant Course Information

- Lab 3 Demos due during your assigned demo slots
 - Don't forget to submit your lab materials before Wednesday at 2:30 pm, regardless of your demo time
- Lab 4 Extension of Lab 3 using 7-seg displays
- Quiz 1 is next week in lecture
 - Last 20 minutes, worth 10% of your course grade
 - On Lectures 1-3: CL, K-maps, Waveforms, and Verilog
 - Past Quiz 1 (+ solutions) on website: Course Info → Quizzes

Synchronous Digital Systems (SDS)

Combinational Logic (CL)

- Network of logic gates without feedback
- Outputs are functions only of inputs

Sequential Logic (SL)

- The presence of <u>feedback</u> introduces the notion of "state"
- Circuits that can "remember" or store information

CSE369, Autumn 2024

Uses for Sequential Logic

- Place to store values for some amount of time:
 - Registers
 - Memory

- Help control flow of information between combinational logic blocks
 - Hold up the movement of information to allow for orderly passage through CL

Control Flow of Information?

Circuits can temporarily go to incorrect states!

Accumulator Example

An example of why we would need to control the flow of information.

* Want:
$$S = 0$$
; initialize?

for $(i = 0; i < n; i++)$
 $S = S + X_i$;

Sequence of inputs

- Assume:
 - Each X value is applied in succession, one per cycle
 - The sum since cycle 0 is present on S

Accumulator: First Try

- Does this work?
 - No

- 1) How to control the next iteration of the 'for' loop?
- 2) How do we accomplish 'S = 0'?

CSE369, Autumn 2024

State Element: Flip-Flop

d FF 7

- Positive edge-triggered D-type flip flop

 - At all other times, the input d is ignored and the previously sampled value is retained

State Element: Register

- n instances of flip-flops together
 - One for every bit in input/output bus width
- Output Q resets to zero when <u>Reset</u> signal is high during clock trigger
 - Some extra circuitry required for this

Accumulator: Second Try

CSE369, Autumn 2024

Flip-Flop Timing Terminology (1/2)

- Camera Analogy: non-blurry digital photo
 - Don't move while camera shutter is opening
 - Don't move while camera shutter is closing
 - Check for blurriness once image appears on the display

Flip-Flop Timing Terminology (2/2)

- Now applied to sequential logic elements:
 - Setup Time: how long the input must be stable before the CLK trigger for proper input read
 - Hold Time: how long the input must be stable after the CLK trigger for proper input read
 - "CLK-to-Q" Delay: how long it takes the output to change, measured from the CLK trigger

Flip-Flop Timing Behavior

Accumulator: Proper Timing

- reset signal shown
- \star X_i and S_{i-1} arrive at adder at different times
 - S_i becomes "wrong" temporarily but corrects before register captures its value
- Avoid input instability around rising edge of CLK

Review Question

Which of the following statements is TRUE?

- (A) The input to a flip-flop must remain stable throughout the CLK-to-Q delay. setup & hold times
- (B) A flip-flop <u>switches between 0 and 1</u> on each trigger.

 input D→ output Q
- (C) In a SDS, we only need to know setup time, hold time, and clk-to-q delay constants to ensure correct behavior.

 also need CL delays, clock period, external input timing, etc.
- (D) None of the above.

Model for Synchronous Digital Systems

- Combinational logic blocks separated by registers
 - Clock signal connects only to sequential logic elements
 - Feedback is optional depending on application
- How do we ensure proper behavior?
 - How fast can we run our clock?

When Can the Input Change?

- * When a register input changes shouldn't violate hold time (t_{hold}) or setup time (t_{setup}) constraints within a clock period (t_{period})
- * Let $t_{input,i}$ be the time it takes for the input of a register to change for the i-th time in a single clock cycle, measured from the CLK trigger:
 - Then we need $t_{hold} \stackrel{\text{(4)}}{\leq} t_{input,i} \stackrel{\text{(2)}}{\leq} t_{period} t_{setup}$ for all i
 - Two separate constraints!

 - 1 timpet, 1 \geq t_hold
 2 timpet, n \le t period t setup

Minimum Delay

- ightharpoonup If shortest path to register input is too short, might violate t_{hold} constraint
 - Input could change before state is "locked in"
 - Particularly problematic with asynchronous signals

CSE369, Autumn 2024

Maximum Clock Frequency

- What is the max frequency of this circuit?
 - Limited by how much time needed to get correct Next State to Register $(t_{setup} \text{ constraint})$

The Critical Path

- The critical path is the longest delay between any two registers in a circuit
- The clock period must be longer than this critical path, or the signal will not propagate properly to that next register

Practice Question

freq = $10^9 \text{ s}^{-1} \rightarrow \text{period} = 10^9 \text{ s} = \frac{1000 \text{ ps}}{1000 \text{ ps}}$

* We want to run on 1 GHz processor. $t_{add} = 100 \text{ ps}$, $t_{mult} = 200 \text{ ps}$,

 $t_{setup} = t_{hold} = 50 \text{ ps.}$ What is the maximum $t_{clk-to-q}$ we can use?

Technology

Break

Where Do Timing Terms Come From?

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=40852354

Safe Sequential Circuits

- Clocked elements on feedback, perhaps outputs
 - Clock signal synchronizes operation
 - Clocked elements hide glitches/hazards

Autopilot Revisited

Flip-flops can "filter out" unintended behavior:

Waveform Diagrams Revisited

- Easiest to start with CLK on top
 - Solve signal by signal, from inputs to outputs
 - Can only draw the waveform for a signal if all of its input waveforms are drawn
- When does a signal update?
 - A state element updates based on CLK triggers
 - A combinational element updates ANY time ANY of its inputs changes

Example: SDS Waveform Diagram

* Assume: t_{C2Q} = 3 ticks, t_{XOR} = 2 ticks, t_{NOT} = 1 tick; t_s = t_h = 0

Verilog: Basic D Flip-Flop, Register


```
module basic_reg (q, d, clk);
  output logic [7:0] q;
  input logic clk;
  input logic clk;
  always_ff @(posedge clk)
    q <= d;
endmodule</pre>
```


Procedural Blocks

- always: loop to execute over and over again
 - Block gets triggered by a sensitivity list
 - Any object that is assigned a value in an always statement must be declared as a variable (logic or reg).
 - Example:
 - always @ (posedge clk)
- always_ff: special SystemVerilog for SL
 - Only for use with sequential logic signal intent that you want flip-flops
 - Example:
 - always_ff @ (posedge clk)

Blocking vs. Nonblocking

- Blocking statement (=): statement effects evaluated sequentially
 - Resembles programming languages
- Nonblocking statement (<=): statement effects evaluated "in parallel"</p>
 - Resembles hardware
- Example:

```
always_ff @ (posedge clk)
begin
    b = a;
    c = b;
end
```



```
always_ff @ (posedge clk)
begin
    b <= a;
    c <= b;
end</pre>
```


SystemVerilog Coding Guidelines

- 1) When modeling sequential logic, use nonblocking assignments
- 2) When modeling combinational logic with an always_comb block, use blocking assignments
- 3) When modeling both sequential and combinational logic within the same always_ff block, use *nonblocking* assignments
- 4) Do not mix *blocking* and *nonblocking* assignments in the same always_* block
- 5) Do not make assignments to the same variable from more than one always_* block

Verilog: Reset Functionality

Option 1: synchronous reset

```
module D_FF1 (q, d, reset, clk);
  output logic q; // q is state-holding
  input logic d, reset, clk;

always_ff @(posedge clk)
  if (reset) reset an only occur on dock trigger
    q <= 0; // on reset, set to 0
  else
    q <= d; // otherwise pass d to q

endmodule</pre>
```

Verilog: Reset Functionality

Option 2: asynchronous reset

```
module D_FF1 (q, d, reset, clk);
output logic q; // q is state-holding
input logic d, reset, clk;
always_ff @(posedge clk or posedge reset)
if (reset)
q <= 0; // on reset, set to 0
else
q <= d; // otherwise pass d to q

endmodule
```

Verilog: Simulated Clock

- For simulation, you need to generate a clock signal:
 - For entirety of simulation/program, so use always block

- Define clock period:
 - Define parameter

```
like #define macro substitution in C
```

```
parameter period = 100;
initial
  clk = 0;
always
  #(period/2) clk <= ~clk;</pre>
```

Verilog Testbench with Clock

```
module D_FF_testbench;
          logic CLK, reset, d; ← simulated inputs logic q; ← Dut adput
          logic q;
        → parameter PERIOD = 100;
toggle form D_FF dut (.q, .d, .reset, .CLK); // Instantiate the D_FF
        ∫initial CLK <= 0; // Set up clock
         (always #(PERIOD/2) CLK<= ~CLK;</pre>
        these occur just after clock triggers

initial begin

d <= 0; reset <= 1;

\leftarrow = 100 \longrightarrow @(posedge CLK);
 reset <= 0;

/=2∞ → @(posedge CLK); d <= 1;
/=3∞ → @(posedge CLK); d <= 0;
/=3∞ → @(posedge CLK); d <= 0;
/=3∞ → @(posedge CLK); d <= 0;</pre>
←-400 → @(posedge CLK); #(PERIOD/4) d <= 1;</pre>
\leftarrow=500 \longrightarrow @(posedge CLK);
          $stop(); Ino statement here // end the simulation
                                  by choice
          end
        endmodule
```

Timing Controls

- * Delay: #<time>
 - Delays by a specific amount of simulation time
 - Can do calculations in <time>
 - Examples: #(PERIOD/4), #50
- & Edge-sensitive: @(<pos/negedge> signal)
 - Delays next statement until specified transition on signal
 - Example: @(posedge CLK)
- * Level-sensitive Event: wait(<expression>)
 - Delays next statement until <expression> evaluates to TRUE
 - Example: wait(enable == 1)

ModelSim Waveforms


```
d <= 0; reset <= 1;
@(posedge CLK); reset <= 0;
@(posedge CLK); d <= 1;
@(posedge CLK); d <= 0; happens just after
@(posedge CLK); d <= 0; happens just after
@(posedge CLK); #(PERIOD/4) d <= 1;
@(posedge CLK); wat after posedge
$stop(); ho statement occurs exactly at posedge
end
```

Summary (1/2)

- State elements controlled by clock
 - Store information
 - Control the flow of information between other state elements and combinational logic
- Registers implemented from flip-flops
 - Triggered by CLK, pass input to output, can reset
- Critical path constrains clock rate
 - Timing constants: setup time, hold time, clk-to-q delay, propagation delays

Summary (2/2)

- Generating a clock
 - Manually create using always block
 - Need to decide on period
- Blocking vs. Non-blocking
 - Blocking: Statements executed "in series"
 - Non-blocking: Statements executed "in parallel"
 - Always use non-blocking for clocked elements
- Synchronous vs. Asynchronous
 - Whether signals are controlled by clock or not