Field Programmable Gate Arrays (FPGAs)

- Readings: B.6-B.6.5

Logic cells imbedded in a general routing structure

- Logic cells usually contain:
 - 6-input Boolean function calculator
 - Flip-flop (1-bit memory)

All features electronically (re)programmable
Using an FPGA

Verilog

FPGA CAD Tools

Bitstream

Simulation

Verilog code for 2-input multiplexer:

module AOI (F, A, B, C, D);
output F;
input A, B, C, D;
assign F = ~((A & B) | (C & D));
endmodule

module MUX2 (V, SEL, I, J);
output V;
input SEL, I, J;
wire SELB, VB;
not G1 (SELB, SEL);
AOI G2 (VB, I, SEL, SELB, J);
not G3 (V, VB);
endmodule
FPGA Programming

Bitstream

00101010001010010
10010010010011000
10101000101011000
10101001010010101
00010110001001010
10101001111001001
01000010101001010
1001001111001010
1010001010010100
01010110101001010
01010010100101001

○ = 1 memory cell (stores 1 bit of info)
FPGA Combinational Logic

How can we use Muxes and Programming bits to compute combinational binary function $F(A,B,C)$?

- Creates a “LUT” or lookup table.
FPGA Sequential Logic

- How do we put DFF’s onto LUT outputs only when we need them?

- Creates a “LE” or logic block
How do we combine LE’s to build larger functions?

This is an Altera "LAB".
FPGA Global Routing

- Can’t do all-to-all/crossbar routing, so what?

![Diagram of LAB connections]
FPGA CAD

- **CAD** = “Computer-Aided Design”

Verilog

- **Tech Mapping:** Convert Verilog to LUTs
- **Placement:** Assign LUTs to specific locations
- **Routing:** Wire inputs to outputs
- **Bitstream Generation:** Convert mapping to bits

Bitstream