EE271 Review Problem 0

❖ As you wait for class to start, answer the following question:

❖ Bob has $500, but owes $300 to Shirley in CA, who’s going to kill him if he doesn’t pay off the money in person in a week. Plane tickets to CA cost $175, while bus tickets cost $75. Based on this, finish off the following statement:

❖ If Bob buys a ________ ticket then Bob won’t be killed.
CSE 369: Introduction to Digital Design

- Professor Georg Seelig, CSE 228 (gseelig@uw.edu)
 - Office Hours: email w/schedule for a slot

- TAs:
 - Bin Yu (by23@uw.edu)
 - Yashin Chen (yashinc@uw.edu)

- Lab Hours: check website
Grading

- 70% - Labs
- 10% - Quizzes
- 20% - Final Exam

Late penalties for uploading lab materials:
- <24 hours: -10%
- <48 hours: -30%
- <72 hours: -60%
- >72 hours: not accepted
Joint Work Policy

- Labs will be done alone
 - Students may not collaborate on labs/projects, nor between groups on the specifics of homeworks.

- OK:
 - Studying together for exams
 - Discussing lectures or readings
 - Talking about general approaches
 - Help in debugging, tools peculiarities, etc.

- Not OK:
 - Developing a lab together

- Violation of these rules is grounds for failing the class
Class & Lab Meetings

❖ Labs:
 ❖ Each student assigned a lab kit, can work where-ever.
 ❖ In addition to the official sections, TAs will have some blocks of office hours to help with labs, etc.
 ❖ Signups for lab demos will be posted shortly.

❖ Quiz: Tue, Feb 2 and Tue, Feb 23 in class
❖ Final: Mon, March 14, 10:30-11:20
Motivation

- Readings: 1-1.4, 2-2.4

- Electronics an increasing part of our lives
 - Computers & the Internet
 - Car electronics
 - Robots
 - Electrical Appliances
 - Cellphones
 - Portable Electronics

- Class covers digital logic design & implementation
Example: Car Electronics

- Door Ajar (DriverDoorOpen, PassDoorOpen):

- High-beam indicator (lights, high beam selected):
Example: Car Electronics (cont.)

- Seat Belt Light (driver belt in):

- Seat Belt Light (driver belt in, passenger belt in, passenger present):
Basic Logic Gates

- **AND**: If A and B are True, then Out is True
 ![AND gate with inputs A and B connected to output Out](image)

- **OR**: If A or B is True, or both, then Out is True
 ![OR gate with inputs A and B connected to output Out](image)

- **Inverter (NOT)**: If A is False, then Out is True
 ![Inverter gate with input A connected to output Out](image)
Review Problem 2

- What does the following circuit do?
TTL Logic

Vdd (TRUE)

GND (False)
Digital vs. Analog

Digital:
only assumes discrete values

Binary/Boolean (2 values)
yes, on, 5 volts, high, TRUE, "1"
no, off, 0 volts, low, FALSE, "0"

Analog:
values vary over a broad range continuously
Advantages of Digital Circuits

- Analog systems: slight error in input yields large error in output
- Digital systems more accurate and reliable
 - Readily available as self-contained, easy to cascade building blocks
- Computers use digital circuits internally
- Interface circuits (i.e., sensors & actuators) often analog

This course is about logic design, not system design (processor architecture), not circuit design (transistor level)
Combinational vs. Sequential Logic

Sequential logic

Network implemented from logic gates. The presence of feedback distinguishes between *sequential* and *combinational* networks.

Combinational logic

No feedback among inputs and outputs. Outputs are a function of the inputs only.
Black Box (Majority)

- Given a design problem, first determine the function
- Consider the unknown combination circuit a “black box”

Truth Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
Boolean Elements and truth tables

Algebra: variables, values, operations

In Boolean algebra, the values are the symbols 0 and 1
If a logic statement is false, it has value 0
If a logic statement is true, it has value 1

Operations: AND, OR, NOT

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X AND Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>NOT X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X OR Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
NAND and NOR Gates

- NAND Gate: \(\text{NOT(AND}(A, B)) \)

 ![NAND Gate Diagram]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X NAND Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- NOR Gate: \(\text{NOT(OR}(A, B)) \)

 ![NOR Gate Diagram]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X NOR Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
XOR and XNOR Gates

- **XOR Gate**: $Z=1$ if X is different from Y

 \[
 \begin{array}{c|c|c}
 X & Y & Z \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
 \end{array}
 \]

- **XNOR Gate**: $Z=1$ if X is the same as Y

 \[
 \begin{array}{c|c|c}
 X & Y & Z \\
 \hline
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
 \end{array}
 \]
Boolean Equations

Boolean Algebra
values: 0, 1
variables: A, B, C, . . ., X, Y, Z
operations: NOT, AND, OR, . . .

NOT X is written as X
X AND Y is written as X * Y, or sometimes X Y or X & Y
X OR Y is written as X + Y

Deriving Boolean equations from truth tables:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Carry</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Carry = OR'd together product terms for each truth table row where the function is 1
if input variable is 0, it appears in complemented form;
if 1, it appears uncomplemented

Sum =
Review Problem 3

- Does the following Boolean equation implement the function given in the truth table?

\[\text{MyCout}' = (A \cdot B) + (A \cdot \text{Cin}) + (A \cdot B \cdot \text{Cin}) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>Cout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Boolean Algebra/Logic Minimization

\[\overline{ABC}_{in} + A\overline{BC}_{in} + A\overline{BC}_{in} + ABC_{in} \quad \text{vs.} \quad AB + AC_{in} + BC_{in} \]

Logic Minimization: reduce complexity of the gate level implementation

• reduce number of literals (gate inputs)
• reduce number of gates
• reduce number of levels of gates

fewer inputs implies faster gates in some technologies
fan-ins (number of gate inputs) are limited in some technologies
fewer levels of gates implies reduced signal propagation delays
number of gates (or gate packages) influences manufacturing costs
Basic Boolean Identities:

\[X + 0 = X \quad X * 1 = X \]
\[X + 1 = 1 \quad X * 0 = 0 \]
\[X + X = X \quad X * X = X \]
\[X + \overline{X} = 1 \quad X * \overline{X} = 0 \]
\[\overline{X} = X \]
Basic Laws

Commutative Law:
\[X + Y = Y + X \quad \text{and} \quad XY = YX \]

Associative Law:
\[X + (Y + Z) = (X + Y) + Z \quad \text{and} \quad X(YZ) = (XY)Z \]

Distributive Law:
\[X(Y + Z) = XY + XZ \quad \text{and} \quad X + YZ = (X + Y)(X + Z) \]
Advanced Laws (Absorbtion)

- $X+XY =$
- $XY + X\overline{Y} =$
- $X+\overline{XY} =$
- $X(X+Y) =$
- $(X+Y)(X+\overline{Y}) =$
- $X(\overline{X}+Y) =$
Boolean Manipulations (cont.)

- Boolean Function: $F = \overline{XYZ} + XZ$

Truth Table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Reduce Function:
DeMorgan’s Law

\[(X + Y) = \overline{X} \cdot \overline{Y}\]

\[(X \cdot Y) = \overline{X} + \overline{Y}\]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>\overline{X}</th>
<th>\overline{Y}</th>
<th>\overline{X} + Y</th>
<th>\overline{X} \cdot \overline{Y}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

DeMorgan's Law can be used to convert AND/OR expressions to OR/AND expressions

Example:
\[Z = \overline{A} \overline{B} C + \overline{A} B \overline{C} + A \overline{B} C + A B \overline{C}\]

\[\overline{Z} = (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + C)\]
DeMorgan’s Law example

- If $F = (XY+Z)(\bar{Y}+\bar{X}Z)(X\bar{Y}+\bar{Z})$,

 $\bar{F} =$
Mapping truth tables to logic gates

- Given a truth table:
 - Write the Boolean expression
 - Minimize the Boolean expression
 - Draw as gates
 - Map to available gates
 - Determine number of packages and their connections

Notation:

7 nets (wires) in this design
Breadboarding circuits

- **B, A, C, F**
 - B and A (from SW1 and SW2)
 - C (from SW3)
 - F (to LED1)

- **Power Supplies**
 - VCC
 - GND